
Masterarbeit im Studiengang Computer Science and Media

Mega-fast or just super-fast? Performance
di�erences of mainstream JavaScript frameworks

for web applications

vorgelegt von

Andreas Nicklaus
Matrikelnummer 44835

an der Hochschule der Medien Stuttgart

am 15. September 2024

zur Erlangung des akademischen Grades eines Master of Science

Erst-Prüfer: Prof. Dr. Fridtjof Toenniessen
Zweit-Prüfer: Stephan Soller

Ehrenwörtliche Erklärung

Hiermit versichere ich, Andreas Nicklaus, ehrenwörtlich, dass ich die vorliegende
Masterarbeit mit dem Titel: �Mega-fast or just super-fast? Performance di�erences
of mainstream JavaScript frameworks for web applications� selbstständig und ohne
fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt ha-
be. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken
entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht.
Die Arbeit ist noch nicht verö�entlicht oder in anderer Form als Prüfungsleistung
vorgelegt worden.

Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrecht-
lichen Folgen (�26 Abs. 2 Bachelor-SPO (6 Semester), � 24 Abs. 2 Bachelor-SPO
(7 Semester), �23 Abs. 2 Master-SPO (3 Semester) bzw. �19 Abs. 2 Master-SPO (4
Semester und berufsbegleitend) der HdM) einer unrichtigen oder unvollständigen
ehrenwörtlichen Versicherung zur Kenntnis genommen.

Eislingen, den 15. September 2024

Andreas Nicklaus

1

Zusammenfassung

Ein wesentlicher erster Schritt in jedem modernen Webanwendungsprojekt
ist die Auswahl eines geeigneten Webentwicklungs-Frameworks. Oft werden
schwerwiegende Entscheidungen aufgrund von Gefühlen getro�en, anstatt die
Leistung des Frameworks im Vergleich zu den Projektanforderungen und -
ressourcen richtig zu bewerten.

In dieser Arbeit wird eine Modell-Webanwendung untersucht, die mit sie-
ben Mainstream-JavaScript-Webentwicklungs-Frameworks identisch erstellt
wurde: Angular, Astro, Next.js, Nuxt, React, Svelte und Vue.js.

Leistungsmessungen werden mit den Tools Lighthouse und Playwright
durchgeführt, um Stärken und Schwächen der Frameworks zu ermitteln. Dazu
werden unter anderem die klassischen Seitenladezeiten sowie die Lade- und
Aktualisierungszeiten von JavaScript-Komponenten ermittelt. Zusätzlich wer-
den zwei neue geeignete abgeleitete Metriken evaluiert: die �Observed Visual
Change Duration� und eine �loadEventEnd�-Metrik.

Die Ergebnisse zeigen keinen eindeutigen allgemeinen Vorteil eines einzel-
nen Webentwicklungs-Frameworks. Die Aktualisierungszeiten der Komponen-
ten weisen Nuxt als das schnellste Webentwicklungs-Framework aus. Next.js
ist in diesem Zusammenhang das langsamste. In ähnlicher Weise scheint Goo-
gle Chrome der schnellste Client-Browser zu sein. Desktop Safari ist der lang-
samste für die Aktualisierung des DOM nach Benutzereingaben.

Abstract

An essential initial step in every modern web application project is the
selection of an appropriate web development framework. Often, detrimental
decisions are made based on sentiment rather than a proper assessment of the
framework's performance vs. the project requirements and resources.

This thesis presents a study of a model web application created identically
with seven mainstream JavaScript web development frameworks: Angular,
Astro, Next.js, Nuxt, React, Svelte and Vue.js.

Performance measurements are done with Lighthouse and Playwright tools
to identify strengths and weaknesses of the frameworks. To this end, classic
page load times and the load and update times of JavaScript components are
retrieved among other data. Additionally two new suitable derivative metrics
are evaluated: the �Observed Visual Change Duration� and a "loadEventEnd"
metric.

The results show no clear-cut general advantage of a single web develop-
ment framework. Component update times indicate Nuxt as the fastest web
development framework. Next.js is the slowest one in this context. Similarly,
Google Chrome appears to be the fastest client browser. Desktop Safari is
the slowest one for updating the DOM after user input

Disclaimer: This thesis has been written with the help of AI tools for translating
sources and outlining parts of the written content. All content has been written or
created by the author unless marked otherwise.

2

Contents

1 Introduction 4

2 Related Work 5

3 Setup of the application and test environment 6
3.1 Example Web Application . 7
3.2 Choice of web frameworks . 12
3.3 Hosting Environments . 14

3.3.1 Vercel . 15
3.3.2 Localhost . 15

3.4 Performance Metrics . 16
3.4.1 Page Load Times . 16
3.4.2 Component Load Times . 19
3.4.3 Component Update Times 20

3.5 Testing Tools . 20

4 Implementation of the study 23
4.1 Component implementation . 23

4.1.1 About Page . 24
4.1.2 Create Page . 26
4.1.3 MediaComponent . 31

4.2 Con�guration of testing tools . 33
4.2.1 Lighthouse . 34
4.2.2 Playwright . 36

5 Evaluation 47
5.1 Page Load Times . 47
5.2 Component Load Times . 54
5.3 Component Update Times . 59

6 Summary 65

7 Concluding remarks 66

A Acknowledgements 69

B Listings 69

C List of Figures 73

D Acronyms 74

E References 75

F List of Tables 78

3

1 Introduction

With the evolution of the world wide web, many changes have disrupted the way
websites are created. From simple �le servers run by few selected institutions,
simple static web pages and dynamic services like blogs and forums to websites
created with the help UI tools and web development frameworks, mainly written in
JavaScript, development has changed drastically since its beginning.

Older web pages often lacked features that developers today work with as a
matter of course. Yet their load and rendering most likely would be blazingly
fast with today's technological advancements in networking, browser functionalities
and user equipment. Modern websites though are often bigger in size, have a
lot more features and are in many respects more complex. Due to the increased
complexity, the mere volume of a website's data has increased, especially with more
and more multimedia �les. That in return has increased the demand for better
performance on all components of the load and rendering process. This technological
advancement has upped the technological sophistication for development tools as
well. Today's modern web development frameworks support developers with tools
to create sites and applications through terminal commands. They often increase
the content-per-line-of-code quota through implicit page generation in contrast to
the explicit writing of source code from earlier times. Many frameworks even feature
con�guration options for directly hosting the web page.

As the generation process changed from writing code manually to automatically,
this implicit page generation undoubtedly increased speed through faster content
generation and resulted in a greater development experience for some developers.
Because developer experience varies between di�erent frameworks and some ap-
proaches are more intuitive to respective developers, a current trend has evolved
for developers to become experts in a single framework rather than many. This
trend lead to a tribal con�ict as to which framework is better than others with
each tribe being convinced that their framework is the best. There is no apparent
way to objectively determine a �best framework� in terms of developer experience
because it is a subjective criterion. The performance of a framework as assessed by
the developer can be similar or greatly di�erent, depending on the frameworks and
the interviewees.

When it comes to user experience and especially the perceived user experience
however, there are plentiful collections of metrics and criteria to choose from so as
to determine the performance of websites, not frameworks. The optimization of
websites has become a goal during development because it has a real e�ect on both
the ranking of web pages in search engines and the user behaviour. Both e�ects
create business interests and �nancial incentives to invest resources into performance
optimization (Li et al., 2010; Zhou et al., 2013). The lack of research on the topic
suggests either a consensus for a negligible e�ect of the development framework on
the website's performance or a lack of knowledge of the e�ect. Measurements on the
e�ect of the development framework are a major convoluted task simply because
the performance of a speci�c website can be dependent on many other factors such
as the user's device, browser, networking hardware or server-side hardware. The
number of possible combinations of factors and their reliability makes it di�cult

4

to measure a single performance run with a reliable result. Every single result is
only a small part of a large number of possible performances the same application
could achieve with di�erent parameters. It is therefore perceivable that a �perfect
combination� of hard- and software exists for each framework or in general, but it
is currently not possible to �nd such a combination because the necessary data is
missing.

Many modern web tracking services provide data about the user, the user's de-
vices, current page load times and so on. This data is helpful in determining current
poor performances and therefore possible starting points for optimization e�orts.
But it gives very little information about recommended actions or recommended
choice of frameworks for a redesign of a web application. Relying on marketing
material for choice of frameworks is equally questionable because most modern
frameworks claim to be fast, easy to use and performance e�cient. This suggests
that each would be a great choice for developers.

In order to �nd a suitable framework for an application, a set of metrics needs to
be at least outlined for comparison. Many former studies suggest metrics to be rel-
evant for the user experience or Search Engine Optimization. Content metrics such
as word count or presence of meta tags might be important for some performance
measurements, but might also have no e�ect on the user experience. In contrast,
rendering metrics such as page load time or page weight might be ascribed to the
framework used during development.

The performance of a framework towards the user can very rarely be compared
because there are no publicly available comparisons between exact replicas of web
applications built with di�erent frameworks. Therefore, a comparative study be-
tween the same website built with di�erent frameworks is needed to get as close as
possible to an exact website replica. With this data, an informed choice might be
made for other projects.

The goals of this thesis are to propose a set of metrics that allow comparing
mainstream JavaScript frameworks for web applications, to provide a comparative
study between selected frameworks and to create a tool to compare the rendering
performance of a page as a whole and of dynamic components within a page.

2 Related Work

Methods, measurements and metrics for the performance of web applications have
been used and interpreted in many past works. Domènech et al. (2006) propose a
list of metrics used for prefetching resources as well as considerations for comparing
results and interpreting measurements from a user's perspective. The considerations
for the selection of metrics heavily inspire the selection of metrics in this work. In
addition, they list di�erences in the underlying base system, the tested workload
and key metrics as problems for comparisons between pages and test suites and
recommend using latency per page as a key performance metric from the user's
point of view. Crook et al. (2009) and Li et al. (2010) describe relevant non-
technical considerations for performance indicators from a user's and stakeholder's
perspective. The e�ect of user-focused measurements of web page speed is clearly

5

important to a site's e�ectiveness for objective goals, such as customer lifetime
value and user retention (Li et al., 2010; Crook et al., 2009; Zhou et al., 2013).
Also, variants and ambiguities cannot be de�nitively ruled out as the main source
of both bad and good results of performance tests.

Most previous studies focus on network components and measurements for the
evaluation of performance (Krishnamurthy and Wills, 2000; Grigorik, 2013; Sun-
daresan et al., 2013). However, these works also take network speeds with a grain
of salt because delays such as propagation, transmission, processing and queueing of
requests as well as factors like number of requests, network speed and latency heav-
ily in�uence the results. Recommended best practices for testing networks from
these papers include using multiple clients and server sites. Additional to these
factors, caching is one of the most important strategies for network performance
(Pourghassemi et al., 2019; Sundaresan et al., 2013).

Pourghassemi et al. (2019) separate the page load time into network activities
and computation activities by splitting contributions to the load time between ren-
dering jobs. They also point out the �uctuation of measurements due to the choice
of browsers, especially the negative e�ect of mobile browsers towards load time.
The network activities are described by Li et al. (2010), Grigorik (2013) and Sun-
daresan et al. (2013). In contrast, Zhou et al. (2013) point out that the content of
a page has a much larger e�ect on the page load time than the client or network
conditions.

Work on client optimization e�orts include the e�ect of page load time on the
user, selection strategies for tested pages and factors for the customers' perception
of response time. According to Li et al. (2010), a delay of 100 ms results in a sales
loss of 1 % and 500 ms delay lead to up to 20 % sales loss. A delay of one second,
decreases the customer satisfaction by 16 % (Zhou et al., 2013). The customers'
expectation in most cases are availability and response time and their perception
is based on many factors (Menasce, 2002). The choice of tested pages is a di�cult
one because no usage data is available at build time and sitemaps only give hints
about the pages' content and pages that are important to the site's e�ectiveness
(Aqeel et al., 2020).

Lastly, Subraya (2006) gives guidelines to designing a web performance testing
tool and points out attributes of good benchmark. Tests are based on stakeholders'
expectations for load times and web pages are classi�ed based on the complexity
and interactivity of their content. This classi�cation strategy is also applied in this
work. Results show that the page load time is pivotal for the bail out percentage
of users.

3 Setup of the application and test environment

Whereas the following chapters cover the implementation of testing and evaluation
of results, this section introduces the conceptual design of the comparative study.
The goals of and requirements for the example application, the di�erences and
choices for the hosting environments for testing and the tools for testing as well as
selected metrics are described here.

6

3.1 Example Web Application

The example application for the study is designed to be a benchmark application
for testing. The following goals were considered during the design process:

1. Page types: With the goal of covering most kinds of web pages, three types
were identi�ed based on the time of data loading. These types di�er in timing
at which the DOM content is loaded or updated. The de�nition of a �nished
load or update for this work is that the linking of resources does constitute
a �nished load or update of the web page regardless of the load time of said
resource on the condition that any linked resource does not update the DOM
in any way. If a resource does mutate the DOM, then the load or update is
considered not �nished.

(a) Static pages are web pages which do not change their content after the
initial response from the web server. The initial HTML document already
is the only resource that is necessary to create a complete DOM. If inline
scripts update the DOM, they are considered external resources.

(b) Delayed pages do not have a complete DOM after loading and parsing
the initial HTML document. Some data or content is loaded and inserted
(or removed) into the DOM after the initial render. The time of these
updates can be any time after the initial render, but the execution of code
or start of request for the resource that is responsible for the update has
to be directly or indirectly triggered by the content of the initial DOM
or HTML document.

(c) Dynamic pages can be updated or update themselves by events that are
not triggered by the content of the initial DOM or HTML document.
These events can either be triggered by user interaction or other events
such as websocket messages. The time of such changes is by their na-
ture not predictable. Dynamic pages are either static or delayed with
additional opportunities for updates.

This list is created with the knowledge that frameworks or other technologies
such as caching may move a web page from one type to another.

2. Modern Development Practices: The example application should contain
modern development practices that do project onto the DOM. Practices that
have no e�ect on either the projection of data or user interactions, such as
coding styles or project management, are considered to have no e�ect on the
performance of the page.

(a) Components: All pages of the app have to consist of components that
encapsulate reproducible HTML snippets and may project data onto the
DOM.

(b) List iteration: Because iterating long lists may decrease performance
noticeably, some components or pages should implement list iteration.

7

(c) String interpolation: Although it is not considered a performance issue
before testing, string interpolation is prevalent in all modern frameworks
known to the author.

(d) Services: Separation of functions in services is a wide spread practice to
reduce code duplicates and easy refactoring. In this case, services also
allow to intentionally implement delays for testing purposes.

3. CSS: Even though the usage of CSS can in no way be considered a modern
practice, it is still used on e�ectively every web page. Additionally, stylesheets
are considered render-blocking resources that impact performance negatively
(MDNMozilla, 2024b; Google, 2019a). For this purpose, CSS shall be included
in all pages and components.

4. Rendering time: In addition to the page type depending on the time of data
load, the time of composing the DOM is dependent on the content availability.
For this thesis, three di�erent types are considered:

(a) Client-side Rendering (CSR): The initial request gets a response with a
mostly empty HTML document (�skeleton�) except linked CSS and JS
resources which after loading, parsing and executing update the DOM.

(b) Server-side Rendering (SSR): Updates that happen after receiving the
skeleton through JS code execution on CSR happen before the initial
request is responded to on the web server. The initial HTML document
is �lled and no longer a skeleton with SSR. Therefore, it has greater byte
size. Server-side Rendering requires an �active� front-end server rather
than only a �le server to execute code.

(c) Prerendering: Rendering happens during build time of the application.
This increases the build time and the byte size of the initial HTML
document, but only a �le server is needed for hosting.

5. Multimedia: Most of network load and therefore network delay is caused
by multimedia �les. Although compression has gotten better over time, the
byte size taken up by multimedia �les of a web page has gotten larger over
the last years (Meenan et al., 2024). Therefore, size optimization of image
and video �les is considered a major part of performance optimization and a
great potential for a performance increase by the used framework.

Based on these considerations, the application �NotInstagram� was designed
as a comparable example application. It is heavily inspired by the Android app
Instagram and a partial reproduction of its app design (Instagram from Meta, 2024).
�NotInstagram� consists of four pages (see �gure 1). 1a shows the design of the Feed
page. It is the start page of the app and contains 4 parts: the header, the pro�le
list, the post list and a footer. Each item of the Feed page is to be implemented as
its own component or components. The plus icon in the header links to the Create
page, the footer links to the About page and every instance of a pro�le picture
and pro�le name links to a Pro�le page. The latter contains pro�le information
including a pro�le picture, name, user handle / ID, pro�le creation time, caption

8

and a grid of all the user's posts (see �gure 1b). The pro�le component encapsulates
all HTML elements of that page except the header containing the app logo and X
icon, which both link back to the Feed page. Both the Feed page and the Pro�le
page are generally expected to classify as delayed pages, because the content of
pro�le and posts lists can only be loaded after the page load.

The Create page (see �gure 1c) has three parts. The header contains the app's
logo and an X icon linking to the feed. A form with three input elements and a
<button> element allows for the input of a multimedia source (image or video) and
a text caption. The multimedia source can either be a URL or a selection from a list
of preuploaded �les. The post caption is a pure text input. The lower part of the
page is the post preview, in which some prede�ned information such as user pro�le
and the user inputs are combined. As such, the Pro�le page is a static page until
the user uses the creation form, at which point it has to be considered a dynamic
page. The About page (see �gure 1d) is designed to statically display information
about the application. It is a static page because no content is loaded after a delay
and no user inputs are possible.

With these pages all page types are covered for testing. The About page and
Create page are static, whereas the Feed page and Pro�le page are partly static
(header and footer), but mostly delayed. The Create page is the only page with
dynamic content.

The data fetching and loading is designed to be implemented as services. For
NotInstagram, two di�erent services are needed. The PostService is a service for
all components to query posts. The method getAll() returns a list of all posts
by all users and getByUserHandle(handle) returns the same list �ltered by those
posted by a user with the handle equal to the function parameter. Pro�leService is
a service to query user pro�les. It has the same two methods which return all user
pro�les and only one user pro�le respectively. Services are designed asynchronous,
but the data is not queried from a server external to the browser, but hard coded.
This design decision is based on the premise that delay can be coded into or out of
asynchronous functions to mimic network delay for testing purposes if necessary.

Figure 2 describes the usage of components and services within page views. It
displays the four pages of NotInstagram, the two services and 15 components. Seven
of those components are icon components. Those components serve as wrappers for
SVGs to ensure their correct scale and style. XIcon poses an exception to the design
as it is a wrapper for a PlusIcon component rotated by 45°. The colored arrows
show the usage of one of the services. Both the Feed page and the Pro�le Page
use the services to load data. For the Feed page, both PostService.getAll()

and ProfileServices.getAll() are needed to pass the data to PostList and
ProfileList. Notably, each Post component accesses the Pro�leService again, to
get the pro�le image and name for its headline, even if the information is available
in a parent or grandparent component. Figure 3 displays the connections between
post and pro�le object instances. The member userhandle of a post references
the member handle of a user pro�le. The Pro�le page needs access to the services
in order to get the information of the requested pro�le and a list of posts from
the getByUserHandle methods to pass into the Profile component. LogoHeader,
NotInstagramLogo and InfoBlock are not data-presenting components, but rather

9

(a) Feed page (/) (b) Pro�le page (/user/@PeterPoster)

(c) Create page (/create) (d) About page (/about)

Figure 1: Screenshots of the NotInstagram application's pages (path in parentheses)

styling components. Their only function is styling text or projecting HTML ele-
ments with CSS information.

In contrast, the MediaComponent is designed as a way to allow both internal and
external images and video sources. It is used by ProfileList, Post and Profile

to display posts and pro�le images. Its main goal is to decide - based on the passed
source string - how to project the multimedia �le onto the DOM. The component
accepts source strings for images and videos, di�erentiated by the string's ending
and therefore the �le's extension. If it is a local image, namely an image that was
available for optimization at build time, the best available form of optimized

tag should be used. For external image links starting with �http://� or �https://� a

10

Figure 2: Pages, components and services of the NotInstagram application

Figure 3: Classes used by the NotInstagram services

11

less optimized or unoptimized tag shall be inserted into the DOM. For videos,
any source string is to be projected onto a <source> tag with identical <video>
wrapper.

The application refers to local images, which can possibly be optimized, and
external images, which cannot be optimized. The reason for this is the assumption
for this project that optimizing multimedia �les uploaded by a user and referencing
them in a manner suitable for this application is not suitable for this study. Rather,
the better alternative for serving the use case of the application would be a dedicated
server for encoding, decoding and generally optimizing multimedia �les. Since this
solution would be independent from the front-end framework's performance and it
would outgrow the scope of this work, a distinction is only made between static
images, called local images here, and external images with full URLs.

3.2 Choice of web frameworks

The choice of tested frameworks for this study is the choice for which frameworks the
application will be implemented in and tested. The requirements for this selection
are twofold. The application has to be implementable as designed above with the
framework without the use of any other non-native tool to the framework or any
tool that was not o�cially intended to be used in combination by the developers
of the primary framework. Additionally, the application must be implementable in
JavaScript. This requirement includes TypeScript frameworks because it is possible
to use JavaScript in TypeScript applications (Bierman et al., 2014). Ease of use and
developer experience should explicitly not in�uence the selection process because it
is not part of the performance of the resulting website.

Because research revealed in early stages of the study that many frameworks
ful�ll those requirements, the long list of candidates had to be sorted. The deciding
factor for this selection was usage, awareness of and positive sentiment towards
tools among developers because the evaluation of mainstream and general-purpose
frameworks appear more valuable than lesser known or specialised tools. A ranking
of the most-used JavaScript front-end frameworks of 2023 (Devographics, 2024)

CSR SSR Previous Experience
Angular yes no yes
Astro yes yes yes
Next.js no yes no
Nuxt yes (generate) yes (build) no
React yes no yes
Svelte yes no no
Vue.js yes no yes

Table 1: List of selected frameworks. Items with both Client-side Rendering (CSR)
and Server-side Rendering (SSR) render some pages or components upon request,
but also require Client-side Rendering (CSR). Previous Experience refers to the
author's experience in developing web applications with the framework.

12

lists the four frameworks with the most developers who have used it before: React
(84 %), Vue.js (50 %), Angular (45 %) and Svelte (25 %). In addition, Astro was
chosen for its especially high awareness among the category �other front-end tools�
(30 %), as well as its usage (19 %) and interest (62 %) in the category �meta-
frameworks�. From the last category of tools, two other frameworks were selected:
Next.js and Nuxt. Both tools are highly-used frameworks and have the appearance
and goal of improving on React and Vue.js, respectively. For this reason, they are
interesting choices for this study. All selected frameworks ful�ll the requirements.
The application is implementable with all frameworks or intended addition of tools.
Next.js and Nuxt require the usage of React or Vue.js tools and dynamic components
cannot be written in pure Astro (Schott, 2024a). Astro intends the usage of other
frameworks to implement so-called �Islands�. For those components, React was
chosen for its top usage rate.

Other frameworks were also considered for selection. Solid and Qwik seemed
�tting candidates in this study because of high interest among developers without
experience with the frameworks and apparent potential for fast performance of their
end product. Additionally, from the ranking of most-used front-end frameworks
Preact was at least considered with a usage percentage of 13 %. Ultimately, all three
were not chosen because of negative sentiment or low usage among developers that
do have experience with these frameworks. This concludes the framework selection
for this study. Table 1 list the selection and categorizes them into groups with and
without CSR and SSR. It also states whether the author of this thesis and developer
for the application had any previous experience working with the framework. This
information is important for the unintended performance optimizations and could
later be used for interpretation of the frameworks performance measurements.

To summarize some comparisons between frameworks or groups of frameworks,
the most appealing for the evaluation are the following:

1. CSR - SSR: Before testing, di�erences between CSR and prerendered pages
are expected, but the metrics and amount of di�erences are probable sub-
jects of interest. Because there is no perceivable di�erence between preren-
dered pages and server-side rendered pages from a client perspective, they are
grouped together in this context.

2. Angular - React - Vue.js: Because these CSR frameworks have been com-
peting for eight years at this point and they are still the most famous front-end
frameworks (Devographics, 2024), the comparison of these frameworks is rel-
evant for this study.

3. Nuxt - Vue.js: As a next generation of the Vue.js framework, the actual
performance increase of Nuxt is interesting for developers.

4. Next.js - React: Same as above in relation to React

5. Vue-based - React-based: Because a direct comparison of frameworks
based on React and based on Vue.js is possible with multiple candidates,
a di�erence in performance is an actual relevant factor for the choice between
the two ecosystems.

13

6. Svelte - Astro: As the most recent popular frameworks in the selection of
frameworks, Astro and Svelte have the potential to both outdo their con-
tenders and outdo each other. This comparison is most interesting for fans of
new tools and the development teams of the frameworks themselves.

3.3 Hosting Environments

After designing the application, the next step in the study process was to decide
where the application is to be hosted for testing. Network delay is a great part
of render delay and performance issues (Grigorik, 2013) because loading �les in
sequence will block rendering if parsing documents and executing code is dependent
on network requests. The request delay is based on the speed of the web server, the
network speed and the size of the generated �le, request and response. Therefore
the time needed for ful�lling network requests should be considered in the choice of
hosting environment or service.

Figure 4: Timing attributes de�ned by the PerformanceTiming interface and the
PerformanceNavigation interface (W3C, 2012)

Figure 4 illustrates how a slow network may delay the rendering process of a
web page. The tests for this study shall cover real-world hosting using a publicly
available service and local hosting to test the network delay and test the application
without interference of network speeds. Additionally, tests can not be done only on
local servers because tests shall include timings before responseEnd. Requirements
for the distant hosting environment or service are threefold. The service shall have
�active server capabilities�, meaning capabilities that exceed pure static �leserver
functions for Server-side Rendering and similar functionalities. Furthermore, it is

14

required to be a widely used hosting service to ensure the real-world applicability of
the study. Since this requirement is not clearly de�nable, it is considered a guideline.
Lastly, to be applicable for small projects as well as established larger websites the
service chosen for the study is required to support free usage and integration into
a Continuous Integration and Continuous Delivery (CI/CD) pipeline because it
is a widely used development practice. As such, the integration is important to
require the least possible manual con�guration for hosting the application because
this study is not supposed to be about the con�gurability. Rather, the study shall
focus on the "out of the box" performance of the frameworks. Continuing with that
sentiment, the optimization and therefore con�guration of the hosting environment
is not part of this work. This is the methodology for answering the question: With
which framework do developers get the best performance for their web applications
without spending much or any time with optimization and con�guration?

3.3.1 Vercel

Based on these considerations and personal experience with the service of the au-
thor previously to this project, Vercel was chosen for hosting the application. Vercel
supports prede�ned con�gurations and automatic recognition of all frameworks cho-
sen for this study. Also, Vercel projects integrate seamlessly into a CI/CD pipeline
based on its integration with GitHub. A GitHub repository was created for each
framework and connected to a Vercel project. During initialization of the Vercel
projects and �rst preliminary tests, one problem with Vercel's free account quickly
became apparent: The bandwidth limitation of 100GB per month and account was
reached after two weeks of testing unoptimized and un�nished versions of the appli-
cations with large image and video �les. Because no information was found on the
e�ect of a reached limit, the account was deemed dead for the month. The solution
to this problem was the creation a second free Vercel account and the plan to create
another account every time the limit would be reached in the future, which it did
not.

3.3.2 Localhost

Framework Build Command Host Command
Angular ng build serve

Astro astro build astro preview

Next.js next build next start

Nuxt nuxt build nuxt preview

nuxt generate nuxt preview

React react-scripts build serve

Svelte vite build vite preview

Vue.js vite build serve

Table 2: Build and host command for each used framework as used for testing the
applications hosted locally

15

The second hosting solution for this study is hosting the application locally on
the testing machine. The client device in question is a HP Envy x360 Convertible
15-eu0xxx with an AMD Ryzen 5 5500U processor and 16GB RAM. The operating
system on the device is Windows 11 Home (Version 10.0.22631) during testing.
This environment ensures minimal network load times and eliminates every other
connected delay such as resolving domain names. If the framework supports a
�preview� mode, it was used for hosting the application. Otherwise, the application
would be build and hosted using the serve command or the active server would be
started with node <filename>. If neither of the two options would be available,
the �dev� mode of the application would be used and tested. Table 2 lists the used
commands for building and starting the webserver per framework.

3.4 Performance Metrics

Slow load time and reactivity of a web page and its user interface decreases user
retention and continuing user actions over time independently from the content (Li
et al., 2010; Zhou et al., 2013). The �reaction time� is interpreted in three separate
ways for this study: The page load time, meaning the time from navigation start
to DOM mutation, the time from a state change, e.g. data query end, to DOM
mutation, here called component load time, and the time between a user input
to �nished DOM mutation, called component update time for this study. Nearly
most of these times can be combined from or described using navigation events (see
�gure 4). These timing categories are not exclusive, but measurements for these
time categories do overlap (see table 3).

Naturally, other metrics than the navigation timings were also considered. From
the list of measurements in Lighthouse reports (see chapter 3.5), sublists with rel-
evant metrics were created to properly represent the time measurements of the de-
scribed render sections and DOM mutation events. These reports cover the initial
load of a page and visual content presentation after initial load. None of the Light-
house metrics cover the time of DOM mutations after user input events. Therefore,
yet additional measurements have to be considered to describe the performance of
mutations. To this end, some self-written code is injected through Playwright (see
chapter 3.5) to measure the time of updates to the DOM. The following sections
describe which measurements are needed for each render section in detail.

3.4.1 Page Load Times

In the context of this study, the �rst contact point for a user to a web page is
considered to be the �rst page load or initial page load. Within the initial load,
the user's main expectations and goals are assumed to be �nding a page with the
wanted information or input rather than �nding the information itself. As a result,
the aim of the client's browser and render engine for this �rst time frame, called
�page load� here, is to both parse HTML and project the content of the page onto the
DOM. In order to focus on this time frame, these metrics describe the application's
performance.

� Total Byte Weight (TBW): The total size of �les or response body directly

16

Page Component
Load Time Load Time Update Time
TBW OLVC
TTFB OFVC

TTI
TBT

LoadEventEnd
DomContentLoaded DOM Mutation Times
LVC
LCP

Table 3: Assignment of metrics to the metric categories

increases either the App Cache time between fetchStart and domLoading or
domContentLoaded if the resource can be cached in the client, or the response
time between responseStart and responseEnd otherwise.

� Time To First Byte (TTFB): The time between navigationStart and
responseStart. Most of the network delay can be described by the TTFB.
Often inaccurately paraphrased as �ping�.

� Time To Interactive (TTI): The time until the page can be interactive is
described by the DOM's loading state. Is is de�ned through navigation events
as the time between navigationStart and domInteractive. Notably, the
timing of domInteractive is not reliable because a DOM may become inter-
active, but the browser may not be interactive yet. Additionally, resources
may still be loading. For example, a DOM from a HTML skeleton may be
�interactive� after a few milliseconds, but no content may be rendered for the
user to see, because CSR code is still loading (Web Hypertext Application
Technology Working Group, 2024).

� DomContentLoaded: Similar to TTI, DomContentLoaded measures the
time between navigationStart and domContentLoaded. At this point in
time, �all subresources apart from async script elements have loaded� (Web
Hypertext Application Technology Working Group, 2024). A large di�erence
between TTFB and DomContentLoaded indicates a great size or at least long
load time of subresources.

� LoadEventEnd: Total time spent immediately after initial load of a page
until the DOM's onload event is �nished. This is the time from
navigationStart to loadEventEnd. The time represents both the capabil-
ity of the used framework to optimize the usage of a client's and network's
resources on initial load and the prioritization of JavaScript execution by
splitting not immediately needed code into async scripts. Therefore, it is a
combined indicator for the code performance and general optimization.

17

� Total Blocking Time (TBT): The TBT is the total time spent by a browser
with parsing and optionally resources that block the rendering process from
�nishing. This includes stylesheets and scripts without the async or defer
tag. The metric directly represents the time before the browser can ful�ll the
user's goal on initial load.

� Observed Last Visual Change (OLVC): This is the time from
navigationStart until the last visual change above the fold, meaning within
the viewport of the user. Metrics with the �observed� are not throttled by the
test tool.

� Largest Contentful Paint (LCP): The LCP is the time between navigation
to the page and the time of rendering for the visually largest text or image
element in the user's viewport (Google, 2020). Optimization of this metric
requires an understanding of the page's content and element size within the
viewport.

From this list of relevant metrics, some expectations can be formulated before
testing for them.

1. TBT is most likely longer with CSR frameworks because the code execution
�lling the HTML skeleton takes some time that is not necessary in clients with
SSR and Prerendered pages. On delayed pages this di�erence is expected to
be very slight or nonexistent.

2. The LCP probably will not di�er across frameworks, but naturally across
pages. In contrast, if a framework does create a faster result for its LCP, it
is expected to be a SSR or Prerendering framework because of its expected
shorter TBT.

3. CSR frameworks di�er from SSR and Prerendering frameworks by Total Byte
Weight similar to Largest Contentful Paint. Although the HTML document
is much slimmer with CSR, the JS �les are expected to be equally larger than
server-side rendered and prerendered pages. It is probably nearly equal in sum
because the byte size of the page is likely mostly made up from multimedia
�les such as images and videos.

4. The selected frameworks should be inversely separable into groups by the
Time To First Byte. Most likely CSR and Prerendering frameworks will be
faster for this metric because the web server can serve as a static �leserver
and does not have to execute any additional code.

5. Because CSR pages consist of only nearly empty HTML skeletons and links
to JS and CSS �les, the TTI is expected to be much faster for CSR pages.

6. The timing of the loadEventEnd is not clearly predictable before testing.
The only expectation is that newer frameworks perform better in this metric
simply because they are newer and are expected to make optimizations that
go into a faster parsing and rendering of a web page.

18

3.4.2 Component Load Times

As a second category of relevant metrics, measurements for the separation of the
app into components are grouped together. This category is designed to re�ect the
performance of the JavaScript that was generated by the framework. This stands in
contrast to how much content can be rendered by the time of responseEnd. To this
end, only measurements after responseEnd can be taken into consideration. Each
mutation from the initial DOM has to be interpreted as an update to a component.
The following metrics are part of this category.

� LoadEventEnd: as explained in section 3.4.1

� Total Blocking Time (TBT): as explained in section 3.4.1

� Time To Interactive (TTI): as explained in section 3.4.1

� Observed First Visual Change (OFVC): The time of the �rst visual
update from a blank canvas. It is an indicator for the start of visual rendering
and a signal to a user that the page is working or loading. For pages with
interactive elements, this metric is less important than the TTI.

� Observed Last Visual Change (OLVC): The time of the last visual update
to a web page. The metric is the most promising for this study as it indicates
the end of the perceivable rendering process and therefore perceptible load
speed.

� Mutation Times: Time from initialization of the app with a predetermined
HTML element such as <main> to a DOM mutation. See section 3.4.3 for
more info on this.

Based on the intention for the usage of these metrics, comparing or optimizing
JavaScript frameworks, the following expectations were presented before tests.

1. Prerendered and SSR pages are expected to show a earlier FVC because the
execution of any code for delayed components can start earlier. This expec-
tation comes from the added code of CSR applications to add static elements
to the DOM through JS.

2. CSR applications probably �nish their LVC slightly earlier than other appli-
cations. The assumption for this prediction is that every application starts
long tasks only after the HTML was parsed which takes longer for SSR or
prerendered pages. As a result of these two expectations the observations of
a MutationObserver most likely have a lower maximum and are less spread
out for SSR and prerendered pages, but start later than CSR pages.

3. As described above, the TBT is expected to be slightly later for CSR than for
SSR or prerendered applications.

4. CSR apps should have a slower TTI.

19

With these metrics, identifying bloated applications and components is the goal.
JavaScript that is loaded, parsed and executed that increases the initial load time
of a page should be indicated through these tests. Such unnecessary or render-
blocking scripts are pointed out through TBT and little di�erence between FVC
and LVC. For example, a script can be considered unnecessary for initial load if it
is executed before rendering and only de�nes functions, initializes objects that are
not yet needed, or creates a blocking dependency chain, e.g. through importing
another script.

3.4.3 Component Update Times

For the third category of relevant metrics, DOM mutation stemming from events
triggered by the user are grouped together. These events in�uence the user ex-
perience on the condition that they lead to DOM mutations. Only two kinds of
measurements can be made to gain insight into the update speed.

� User Input Times: The time of a user input. The kind of user input is not
restricted to onInput or onChange events, but rather any event triggered by
the user.

� Mutation Times: Time of a mutation from user input within a prede-
termined HTML element such as <main> to another DOM mutation. A
MutationObserver is initialized and all mutations are recorded. Designated
mutations to the DOM are added child elements, removed child elements and
attribute updates (added, edited and removed).

For these metrics no expectations could be formulated before testing because
the speed of a mutation is purely based on the implementation of the framework
itself. These implementations are not openly accessible without knowledge of the
frameworks' source code. Still, some prediction can be made independently from a
speci�c framework. Apps that represent their state in the DOM, e.g. an �edited�
state for a user input or an updated value attribute of an <input> element, will
most likely have . . .

1. more entries in the recorded DOM mutations and . . .

2. a later last entry in the recorded DOM mutations.

Also, the implementations of the app show di�erences here as additional ele-
ments, such as <div> elements as wrappers for each component can in�uence the
time and number of updated elements in either direction, dependent on the use
case.

3.5 Testing Tools

In order to test for these metrics, a set of multiple testing tools is needed. These
testing tools are required to cover the measurements described above and the tools
have to work with similar con�guration for all selected frameworks. Test reports

20

have to be generated in a machine-readable format in order to evaluate the results
and create aggregate metrics from them. This is a requirement because it is known
from previous work that performance values in the web development context have
a considerable variance. To this end, two di�erent tools for automating tests were
chosen:

1. Lighthouse CLI: The Lighthouse CLI makes it possible to automate the
generation of Lighthouse reports. Tests for these reports combine measure-
ments with weights in categories and reduce them to a single score, as well
as �ve main category scores. These categories are performance, accessibility,
best practices, Search Engine Optimization (SEO) and Progressive Web App
(PWA). Additionally, Lighthouse reports contain recommendations for opti-
mizing metrics and increasing the scores. It is a popular tool for measuring the
initial page loads, page content and meta information for a website. Changes
after the initial page load are not possible to test with the Lighthouse CLI.
Reports are by default generated as HTML �les, but the tool was con�gured
to generate both HTML and JSON reports for this study. Since Lighthouse
is designed to test live websites in production, the tool does not integrate
starting a local development server. Testing with Lighthouse therefore needs
to be manually joined with building and hosting the application locally while
tests are running.

2. Playwright: Playwright features front-end testing tools for web applications
in development. It mainly supports checking page content, but also supports
the execution of injected JavaScript and full control over the browser. This
also means that the control over the user inputs enables the measurement of
timings connected to user behaviour such as clicking links and buttons, hover
the mouse over elements or using <input> elements. Such options are needed
to evaluate the timings of interactive elements. The development-focused
design also bears the advantage of its initialization being included in some
framework's initialization options. Both Svelte and Vue.js support installing
and initializing con�guration for Playwright in their own initialization (see
chapter 4 for more on this). Similar to Lighthouse, reports can be created as
HTML and JSON �les. For this study, only JSON reports were used for the
results, but HTML reports were used for debugging tests.

Although all requirements can be ful�lled with these tools, multiple problems
were found with them. Because Lighthouse reports include data that is in�uenced
by all actors and constraints regarding the web page, many factors contribute to
the variability of its results. Google (2019b) lists possible sources for performance
variability. The relevant sublist of factors for this study contains for local tests client
resource contention, client hardware variability and browser nondeterminism. Client
hardware variability is mitigated through the usage of the same client device for all
tests (see section 3.3.2). Client resource contention could not be fully mitigated.
Attempts to keep a lid on client resources were killing the most hardware intensive
background tasks and services on the test machine before starting tests. Browser
nondeterminism was taken into account and adopted as a test dimension because

21

the target group of an application should be factor for the choice of framework,
especially for purely desktop or mobile applications. To this end, tests were executed
with the most commonly used browsers wherever possible. For Lighthouse tests,
such an option was not found. Instead, all tests were explicitly executed on Google
Chrome for desktop. A Lighthouse report was not generated on other browsers.

For tests on a distant server, other factors contribute to the �uctuation of Light-
house test results in addition. Local network variability, tier-1 network variability
and web server variability have to be considered for the tests. The �rst two could
not be mitigated. The internet connection speed at the test location was 100 Mbit/s
to simulate common modern consumer internet connections in Germany (Gerpott,
2018). Web server variability could not be mitigated as well. For this reason, a
hosting service was explicitly chosen for all tests to minimize the variability across
frameworks (see section 3.3).

For mitigation of all factors of variability, Lighthouse tests were executed 20
times to gain an average of all measurements. The repetitions were con�gured with
the same browser context and web server for local tests for each run. The reason
for this decision is that �uctuations based on the �rst requests within the client or
the server should be mitigated with this method.

Two additional problems with Playwright were found before the start of the
test phase. The time of injection for JS scripts could not be properly determined.
This �uctuation could not be mitigated. Also, reading data from the window con-
text after the fact proved to be di�cult because the context closes after the test
ends and the report only contains the explicitly tested values. Objects such as the
needed navigation timings are no longer available after the fact. The solution to
this problem was to attach all necessary information as a �le to the report so it is
readable after the context is closed.

Lighthouse Playwright
Total Byte Weight (TBW) domContentLoaded
Time To First Byte (TTFB) loadEventEnd
Time To Interactive (TTI) User Input Times
Total Blocking Time (TBT) Mutation Times
Largest Contentful Paint (LCP)
First Visual Change (FVC)
Observed First Visual Change (OFVC)
Observed Last Visual Change (OLVC)

Table 4: Assignment of metrics to the test tools

With all tools and workarounds in place, the data needed for the study could
be collected. Lighthouse covers TBW, TTFB, TTI, TBT, LCP, FVC, OFVC and
OLVC, whereas Playwright covers all navigation and HTML event times, namely
DomContentLoaded, LoadEventEnd, user input times and mutation times (see ta-
ble 4).

22

4 Implementation of the study

This chapter contains details of the implementation and the strategies for the cre-
ation of the project as well as for the separation of projects for each framework.
The goal is to de�ne taken steps to ensure reproducibility and traceability of im-
plementation choices and, as a result, interpretability of the results in the following
chapters.

The implementation for each framework was started using the o�cial �get started�
guide on the framework's website (Google LLC, 2024; Schott, 2024b; Vercel, Inc.,
2024; Chopin et al., 2024; Meta Platforms, Inc., 2024; Svelte, 2024; You, Evan,
2024). Each website provides a command which creates a project directory and
project �les. The initialization options for the creation process were chosen with
the following rules.

1. The project is to be created as empty as possible to ensure the focus on the
framework �as is� rather than how it can be con�gured. No demo project is
chosen if an option with fewer precon�gured �les is available.

2. No testing tools are to be precon�gured except Playwright. If Playwright is
not an option, then no testing tool should be chosen.

3. Otherwise the default options (recommended or �rst) should be chosen. If
�none� is an option, it it should be selected.

After the initialization under these rules, the four web pages of the respective
apps, their components and the routing between the pages were con�gured. After
creation of the Vue.js and React app, each component's template, code and style
information was copied from either their Vue.js or React counterparts and adapted
to the framework in order to speed up the creation process. Then, optimization
e�orts such as con�guring image components (see section 4.1) and adaptation to
the hosting environment were performed.

Additionally, project directories were separated into GitHub repositories. The
separation is a requirement for hosting with Vercel because a maximum of three
Vercel projects can be hosted from the same repository. This study exceeds this
limit. This limiting condition entails that all testing con�guration could not be
centralized, but had to be duplicated across repositories. The setup of the testing
environment has been the last step of the project creation (see section 4.2).

4.1 Component implementation

While most of the design decisions for the components of the application have been
made during the design of the application itself, the design choices relating to the
implementation of said components are open to adaptation to the framework. The
goals for this implementation period are few:

1. The implementation for each framework should be as similar to the others as
possible, meaning the HTML elements should be the same.

23

2. The implementation should follow the design language of the framework.
Therefore no principles should translate from one implementation to another
if they do not �t to the framework's design principles.

3. The implementation has to follow the component design as described in section
3.1. If the design of the example application cannot be followed, changes are
to be as minimal as possible.

This section describes selected components and code snippets where they are ei-
ther interesting for the performance, unforeseen choices or where they di�er notably
between frameworks. The author of this study has had the most experience with
Vue.js prior to this project. For this reason, code snippets in Vue.js have the most
presentability and code snippets in this paper are shown in Vue.js wherever possi-
ble. The components described in this section are the About as a opportunity for
fast load times, the Create page as an example for dynamic pages and components
and the MediaComponent for its implementation di�erences between frameworks.

4.1.1 About Page

Figure 5: Graphical subdivision of the About page into components

The About page is an interesting case because, as described in section 3.1, it
is the only static page of the application. Its components and HTML children are
therefore also static. Figure 5 shows a graphical overview of the page's contents
from a DOM perspective. Because of its static nature, it is also the only page that
can be fully prerendered. Notably, the lower part of the page consists of multiple
subcomponents <Infoblock> with a title passed as a prop and a paragraph passed
in a slot as a HTML child for the component. Functionally, its only purpose is
styling and its only e�ect on the DOM is the addition of a <h2> and a <p> element.

24

The other imported subcomponents <NotInstagramLogo> and <SendIcon> are also
wrappers for a <h1> and a element, respectively. Listing 1 demonstrates
the static nature of the page view and the hard-coded addition of all text and
multimedia in the template.

1 <!-- AboutView.vue -->

2 <template >

3 <div id="AboutView">

4 <RouterLink id="top -backlink" class="backlink" :to="{ name:

'Feed ' }"> back </RouterLink >

5

6 <p class="cursive">This is</p>

7 <NotInstagramLogo />

8 <img class="transparent logo" alt="" width="40%" height="240"

loading="lazy" :src="Logo" />

9

10 <p class="cursive">created by</p>

11 <p class="cursive big">Andreas Nicklaus </p>

12 <div id="socials">

13 <p>

14 <a href="https :// github.com/andreasnicklaus"

target="_blank">

15 <img class="transparent" width="29" height="29"

loading="lazy" :src="GitHub" />

16 @andreasnicklaus

17

18 </p>

19 <p>

20 <a href="https ://www.linkedin.com/in/andreasnicklaus/"

target="_blank">

21 <img class="transparent" width="29" height="29"

loading="lazy" :src="LinkedIn" />

22 @andreasnicklaus

23

24 </p>

25 <p>

26

27 <SendIcon/> an067@hdm -stuttgart.de

28

29 </p>

30 </div>

31

32 <InfoBlock title="What is this?">

33 This project is part of the master thesis by ...

34 </InfoBlock >

35 <InfoBlock title="Placeholder 1"><!-- ... --></InfoBlock >

36 <InfoBlock title="Placeholder 2"><!-- ... --></InfoBlock >

37 <InfoBlock title="Placeholder 3"><!-- ... --></InfoBlock >

38 <InfoBlock title="Placeholder 4"><!-- ... --></InfoBlock >

39 <InfoBlock title="Placeholder 5"><!-- ... --></InfoBlock >

40

41 <RouterLink id="bottom -backlink" class="backlink" :to="{ name:

'Feed ' }"> back </RouterLink >

25

42 </div>

43 </template >

Listing 1: About page in Vue.js (as displayed in �gure 5)

4.1.2 Create Page

The Create page poses an opposite to the About page. In contrast to a static
page with non-changing content, the purpose of the Create page is to preview a
new post. Its purpose is to update after user input. Listing 2 and 3 show the
implementation of the Create page in Vue.js. The data of the component has four
dynamic parts: The options and the choice for the selection of the post image in a
<select> element, the caption of the new post and the media URL for the <input>
element. The last data point for the component is the user handle, which is static
for the preview in this example application. The computed property mediaSource

(see listing 3, line 40) represents the logical choice between the media selection and
source URL for the multimedia �le in the previewed post. This template contains a
static <header>, the <form> with dynamic attributes and a Post component. This
subcomponent has to be dynamic and reactive to its props as they are changing
throughout the process of post creation.

1 <!-- CreateView.vue -->

2 <template >

3 <header >

4 <RouterLink :to="{ name: 'Feed ' }"> <NotInstagramLogo/>

</RouterLink >

5 <RouterLink :to="{ name: 'Feed ' }"> <XIcon/> </RouterLink >

6 </header >

7

8 <form id="newPostForm" action="" method="post">

9 <input type="url" name="mediaUrl" id="mediaUrl"

placeholder="Insert your media URL here ..."

v-model="mediaUrl" />

10 <p>or</p>

11 <select name="preloaded -image" id="preloaded -image"

v-model="mediaChoice">

12 <option value="">Choose one of our media files

here ...</option >

13 <option v-for="media in preloadedMedia" :key="media"

:value="media">

14 {{ media }}

15 </option >

16 </select >

17 <textarea name="caption" id="caption" cols="30" rows="3"

placeholder="Type your caption here" v-model="caption"/>

18 <button type="submit" :disabled="!(caption && mediaSource)">

Post it! </button >

19 </form>

20

21 <hr />

22

26

23 <Post :userhandle="userhandle" :caption="caption" :likeCount="0"

:mediaSource="mediaSource" :hideActionIcons="true" />

24 </template >

Listing 2: Create page in Vue.js (Template)

25 // CreateView.vue

26 export default {

27 name: "CreateView",

28 data() {

29 return {

30 preloadedMedia: [

31 "canyon.mp4", "abstract -circles.webp", ...

32],

33 userhandle: "@you",

34 caption: "",

35 mediaUrl: "",

36 mediaChoice: "",

37 };

38 },

39 computed: {

40 mediaSource () {

41 return this.mediaUrl || this.mediaChoice;

42 },

43 },

44 };

Listing 3: Create page in Vue.js (Script)

Listings 4 and 5 show the implementation of the Post component in Vue.js.
It requires �ve props for the �ve data points of a post (see �gure 3) and two
additional props for the control over the design and loading behaviour of the post's
image or video. Additionally, the mounted method loads the user data through
the ProfileService (see listing 5, line 43). The template of the component uses
MediaComponent twice, once for the pro�le picture and once for the post image
or video. The attributes for the pro�le picture are mainly static because the user
data is not edited through the create form. The attributes of the post multimedia
are dynamic and editable except the class, width and height. Additionally, the
projection of the post's caption onto the DOM is dynamic. Every time the caption
changes, the string is split by whitespaces and each word is projected onto a
element, so it can be styled as a hashtag if applicable. Afterwards, the list of
elements is joined using whitespaces. The purpose of this projection method for the
caption is only the styling of hashtags.

1 <!-- Post.vue -->

2 <template >

3 <div class="post">

4 <RouterLink v-if="user" :to="{ name: 'Profile ', params: {

handle: userhandle } }" class="postUserInfo" >

27

5 <MediaComponent class="profileImage"

:src="user?. profileImageSource" alt="" width="44"

height="44" />

6 {{ user?. username }}

7 </RouterLink >

8 <MediaComponent class="postMedia" :src="mediaSource"

:alt="caption" width="100%" height="100%"

:eagerLoading="eagerLoading" />

9 <div class="actionIconRow" v-if="!hideActionIcons">

10 <div class="leftActionIcons">

11 <HeartIcon />

12 <CommentIcon />

13 <SendIcon />

14 </div>

15 <BookmarkIcon />

16 </div>

17 <p class="likeCount">{{ likeCount }} likes </p>

18 <p class="caption">

19 <span v-for="(word , i) in caption.split(' ')" :key="i"

:style="word.startsWith ('#') ? 'color: #0091E2 ' : ''">

20 {{ word }}{{ " " }}

21

22 </p>

23 <p class="creationTime">{{ creationTimeToString }}</p>

24 </div>

25 </template >

Listing 4: Post in Vue.js (Template)

26 // Post.vue

27 import ProfileService from "@/services/ProfileService";

28

29 export default {

30 name: "Post",

31 props: {

32 userhandle: String ,

33 caption: String ,

34 mediaSource: String ,

35 likeCount: Number ,

36 createdAt: Date ,

37 hideActionIcons: Boolean ,

38 eagerLoading: { type: Boolean , default: false },

39 },

40 data() {

41 return { user: null };

42 },

43 mounted () {

44 ProfileService.getByHandle(this.userhandle).then((user) =>

(this.user = user));

45 },

46 computed: {

47 creationTimeToString () {

48 // ...

49 },

50 },

28

51 };

Listing 5: Post in Vue.js (Script)

Because the creation of such a dynamic component is an intended use case for
Angular, Next.js, Nuxt, React, Svelte and Vue.js, their implementation is not un-
usual. Astro poses as an opposite to this. Because dynamic or reactive components
are not implementable natively as Astro components, another framework has to be
used in Astro Islands. For this reason, other components had to be invented in
addition to the components as described in �gure 2. CreateForm encapsulates the
dynamic parts of the Create page. It is a React component with the form and post
preview. Because Astro components cannot be used in Islands, every subcompo-
nent used here had to be implemented with React as a duplicate to a native Astro
component.

Listings 6, 7 and 8 show the implementation of this unique design in Astro.
The Create component imports and inserts the React component CreateForm into
HTML snippets for the page and marks it as a CSR component with client:load

(see listing 7, line 18). From this component inwards, all HTML is generated on
the client and purely as a React application. The CreateForm itself contains the
form and Post subcomponent. Because of this structure, the components Post,
MediaComponent, BookmarkIcon, CommentIcon, HeartIcon and SendIcon had to
be implemented as Astro components and as React components. Figure 6 shows
this updated component structure with Astro Islands.

1 // create.astro

2 export const prerender = false;

3 import HtmlLayout from "../ Layouts/HtmlLayout.astro";

4

5 import NotInstagramLogo from

"../ components/NotInstagramLogo.astro";

6 import XIcon from "../ components/icons/XIcon.astro";

7 import CreateForm from "../ components/CreateForm.jsx";

8 import React from "react";

9

10 const userhandle = "@you";

Listing 6: Create page in Astro (Frontmatter)

11 <!-- create.astro -->

12 <HtmlLayout >

13 <header >

14 <NotInstagramLogo />

15 <XIcon />

16 </header >

17 <React.StrictMode >

18 <CreateForm userhandle ={ userhandle} client:load />

19 </React.StrictMode >

20 </HtmlLayout >

Listing 7: Create page in Astro (HTML)

29

1 // CreateForm.jsx

2 import { useState } from "react";

3 import styles from "./ CreatePost.module.css";

4 import Post from "./Post";

5

6 const preloadedMedia = [

7 "canyon.mp4", "abstract -circles.webp", // ...

8];

9

10 const CreateForm = ({ userhandle }) => {

11 const [caption , setCaption] = useState("");

12 const [mediaUrl , setmediaUrl] = useState("");

13 const [mediaChoice , setmediaChoice] = useState("");

14

15 function mediaSource () { return mediaUrl || mediaChoice; }

16

17 return (

18 <>

19 <form id={ styles.newPostForm} action="" method="post">

20 <input type="url" name="mediaUrl" id={ styles.mediaUrl}

placeholder="Insert your media URL here ..."

value ={ mediaUrl} onChange ={(event) =>

setmediaUrl(event.target.value)} />

21

22 <p>or </p>

23

24 <select name="preloaded -image" id={"preloaded -image"}

value ={ mediaChoice} onChange ={(event) =>

setmediaChoice(event.target.value)}>

25 <option value="">Choose one of our media files

here ...</option >

26 {preloadedMedia.map((media) => (

27 <option key={ media} value={ media}>{media}</option >

28))}

29 </select >

30 <textarea name="caption" id={ styles.caption} cols="30"

rows="3" placeholder="Type your caption here"

value ={ caption} onChange ={(event) =>

setCaption(event.target.value)}/>

31 <button type="submit" disabled ={!(caption &&

mediaSource ())}> Post it! </button >

32 </form >

33 <Post userhandle ={ userhandle} caption ={ caption}

likeCount ={0} mediaSource ={ mediaSource ()}

hideActionIcons ={true} />

34 </>

35);

36 };

37

38 export default CreateForm;

Listing 8: Create form in Astro

30

Figure 6: Adapted component structure for Astro Islands

4.1.3 MediaComponent

MediaComponent is a presenter component for multimedia content, namely an im-
age or a video. It is used within the Pro�leList, Pro�le and Post components (see
�gure 2). As described in section 3.1, the main use of this component for a devel-
oper is to centralize the optimization of multimedia �les and to ensure its correct
size and style. As such, it is a catch-all component for many kinds of multimedia
sources. Listings 9 and 10 show parts of its implementation in Vue.js.

1 <!-- MediaComponent.vue -->

2 <template >

3 <img ref="image" class="postMedia"

v-if="mediaSource.endsWith('webp ')" :alt="alt" :width="width"

:height="height" :loading="eagerLoading ? 'eager ' : 'lazy '"

:src="mediaSource" />

4 <video ref="video" class="postMedia"

v-else -if="mediaSource.endsWith('mp4 ')" :width="width"

:preload="eagerLoading ? 'auto ' : 'metadata '" controls

controlslist="nodownload ,nofullscreen ,noremoteplayback"

disablepictureinpicture loop muted >

31

5 <source :src="mediaSource" type="video/mp4" />

6 </video>

7 <div v-else class="mediaError" ref="mediaError">

8 <p>Nothing to see yet ...
Choose an image to continue!</p>

9 </div>

10 </template >

Listing 9: MediaComponent in Vue.js (Template)

13 // MediaComponent.vue

14 import { playPauseVideo } from "@/utils/autoplay.js";

15

16 export default {

17 name: "MediaComponent",

18 props: {

19 src: { type: String },

20 alt: { type: String , default: "" },

21 width: String ,

22 height: String ,

23 eagerLoading: { type: Boolean , default: false },

24 },

25 computed: {

26 mediaSource () {

27 if (

28 this.src == null ||

29 this.src == undefined ||

30 this.src.startsWith("http")

31)

32 return this.src;

33 return new URL(`/src/assets/stock -footage/${this.src}`,

import.meta.url).href;

34 },

35 },

36 mounted () {

37 const video = this.$refs.video;

38 if (video) playPauseVideo(video);

39 },

40 };

Listing 10: MediaComponent in Vue.js (Script)

First, the component takes �ve props that can be passed to it as HTML at-
tributes (see listing 10, line 18 �.). The src string contains either the �le name or
URL to the �le. The alt prop is the alternative text for an image to simple pass
to the alt attribute of the tag, as well as the width and height of the image
or video. These props are primarily needed for optimization of layout shifts and
to optionally tell the browser which image variant is needed from a source set on
the page. Lastly, the eagerLoading prop is a boolean indicator for whether the �le
needs to be loaded �rst (images) or preloaded fully (videos).

Second, the computed property mediaSource returns the correct link to either
the image or video source based on the start of the src prop. This allows the
component to identify faulty or external source URLs and only import needed

32

local multimedia �les. This implementation design is unique to Vue.js and Nuxt.
Looking at the implementation in React and Next.js, the same e�ect is achieved
through the useState and useEffect hooks. The ngOnChanges hook is used in
Angular. In Svelte, the mediaSource is de�ned with a leading $:, making it reactive.
Because of its non-dynamic nature the native Astro component de�nes mediaSource
statically server-side. On the other hand, the dynamic component uses the same
implementation as the React application.

Third, every framework uses conditional rendering to project either an image, a
video or an error message onto the DOM. Additionally, the Svelte component checks
another condition: external and internal images. For image source strings starting
with �http�, an HTML-native element is used, whereas the Svelte-native
<enhanced:img> tag is used for all other images. The remaining frameworks use
either one or the other method to insert images. Vue.js, React and Angular do not
support enhanced image elements. These frameworks only include images using the
 tag. In contrast, Astro, Next.js, Nuxt and Svelte do have components that
improve the performance of image elements. Astro natively supports an <Image>

component that outputs an tag with optimized attributes. Next.js comes
with another <Image> component that optimizes images with a prede�ned width
and height and Nuxt has a <NuxtImg> component to optimize images and de�ne
presets for its images. Svelte is the only one of this group that does not support
full URLs to be passed to its enhanced image component.

Fourth, the attributes of the elements are designed to optimize their load
performance, size and image quality. While no way to optimize the size and quality
of the source of simple elements is apparent, the load performance is adapted
to the usage of a <MediaComponent>. The �rst Post of a PostList is always eager-
loaded, whereas all other images are lazy-loaded. The size of the bounding box of
the image is also de�ned in order to prevent layout shifts during or after the loading
of the image. Enhanced image components are con�gured to ideally optimize the
size and quality of the requested image, as well as to insert blurry placeholder
images if possible.

The <video> elements are designed to optimize the load behaviour of the browser
and to change the default presentation and styling. Each video has a de�ned width
and height, playback behaviour and controls. In order to come as close to the appli-
cation's model, Instagram, videos should autoplay, but be muted by default. Each
single behaviour is a single attribute to set, but autoplaying every video requires
every video to be loaded on page load. This network load bears a performance
decrease. For this reason, only the metadata is preloaded unless it is the �rst post
in the PostList. To ensure the wanted autoplay feature, each <video> element is
referenced using the framework and custom code ensures that videos play when
they are in the viewport and pause when they are outside of it. This is achieved
using an IntersectionObserver (MDN Mozilla, 2024a).

4.2 Con�guration of testing tools

As described above, the implemention of tests and test con�guration were the last
step in the process of project creation. As such, tests were either left �as is� or not

33

con�gured until the application could be considered �done�. The test suite for this
project can be split into two halves: Lighthouse CLI automation and Playwright
tests (see section 3.5). Lighthouse is used to mostly cover aggregate metrics, while
Playwright is used to export navigation and HTML event times.

4.2.1 Lighthouse

To this end, a script was written to automate the execution of Lighthouse tests
and to store Lighthouse reports in a comprehensive way. Listing 11 shows parts
of the implementation of the testing script. It reads project con�gurations from
an external con�guration �le and iterates over them, executing the tests for ev-
ery framework multiple times. Listing 12 contains an excerpt of the con�gura-
tion �le. Every project is built and hosted, if either a host command, e.g. using
npm run <script>, or a serve command using serve is de�ned in the con�guration
�le. While the application is hosted, a headless Google Chrome browser window
is launched and multiple lighthouse tests are preformed. The report is generated
using the URL as it is speci�ed in the con�guration and with static options. These
options de�ne among other things that an HTML report is to be generated, only
performance metrics are to be collected and the HTTP status code is to be ignored.
The last option is necessary because web servers started using serve return a 404
status code for �les that do not exist in the hosted directory. For applications that
rely on index.html to be returned if a requested resource is not available, this
behaviour is not desired. For example, requesting the de�ned path /about results
in a 404 code with the index.html �le as the response body. Withouth the option
ignoreStatusCode: true, the Lighthouse test would fail as the page is considered
to be unavailable.

1 // testing -script/index.js

2 // ...

3

4 function build(projectConfig) {

5 return new Promise ((resolve , reject) => {

6

7 if (projectConfig.buildCommand) {

8 logger.info("Starting build ...")

9 exec(`${projectConfig.buildCommand}`, /* ... */)

10 }

11 else {

12 logger.info("Skipping build because buildCommand was not

specified")

13 resolve ()

14 }

15 })

16

17 }

18

19 // ...

20

21 for (let projectConfig of config.projects) {

34

22 // ...

23 // BUILD PHASE

24 await build(projectConfig)

25

26 // STARTING HOST PROCESS

27 // ...

28

29 // START LIGHTHOUSE TEST

30 logger.info("Starting lighthouse tests ...")

31 const url = projectConfig.url

32 const chrome = await chromeLauncher.launch({ chromeFlags:

['--headless '] });

33 const options = { logLevel: 'warn', output: 'html',

onlyCategories: ['performance '], port: chrome.port ,

ignoreStatusCode: true };

34

35 for (const route of (projectConfig.paths || ["/"])) {

36 // ...

37

38 for (let i = 0; i < config.runsPerProject; i++) {

39

40 const runnerResult = await lighthouse(url + route , options);

41

42 const { report: reportHtml , artifacts , lhr } = runnerResult;

43 const { timing , fetchTime , categories , ... rest } = lhr

44

45 fs.mkdirSync(`${projectConfig.reportDirectory}${route == "/"

? "/index" : route}`, { recursive: true }, (err) => {

46 if (err) throw err;

47 });

48 fs.writeFileSync(`${projectConfig.reportDirectory}${route ==

"/" ? "/index" : route}/lighthouse -report -${new

URL(url).hostname}-${dateToUriSafeString(new

Date())}.html `, reportHtml);

49 fs.writeFileSync(`${projectConfig.reportDirectory}${route ==

"/" ? "/index" : route}/lighthouse -report -${new

URL(url).hostname}-${dateToUriSafeString(new

Date())}.json `, JSON.stringify ({ artifacts , lhr }, null ,

2));

50

51 // ...

52 }

53

54 // ...

55 }

56

57 await chrome.kill();

58 if (serverCommand) await stopServer(hostProcess , projectConfig)

59 }

60

61 logger.info("ALL DONE")

Listing 11: Automation script for Lighthouse tests

1 // testing -script/config.js

2 export default {

35

3 runsPerProject: 20,

4 preferredServeCommand: "serve",

5 projects: [

6 // ...

7 {

8 name: "Svelte on Vercel",

9 reportDirectory: "./ reports/ig -clone -svelte/vercel",

10 url: "https ://ig-clone -svelte.vercel.app",

11 paths: ["/", "/about", "/create", "/user/@PeterPoster"]

12 },

13 // ...

14 {

15 name: "Svelte",

16 projectPath: "../ig -clone/ig -clone -svelte",

17 buildCommand: "npm run build",

18 serveCommand: "npm run preview",

19 reportDirectory: "./ reports/ig -clone -svelte/localhost",

20 url: "http :// localhost :4173",

21 paths: ["/", "/about", "/create", "/user/@PeterPoster"]

22 },

23 // ...

24]

25 }

Listing 12: Test con�guration for Lighthouse tests

Once the test results are available, the relevant metrics are collected, stored in
a JSON �le and the HTML report is stored as a means to debugging. After the
tests are �nished and results are stored, the Google Chrome window is killed and
the webserver is stopped.

In order to evaluate and summarize the collection of tests performed using the
automation script, another script was written so that test summaries are created.
This report reader iterates over the list of JSON �les and calculates the average
per metric, route and project con�guration from the con�guration �le. It makes it
easier to compare the test results and interpret the performance of the frameworks
(see chapter 5).

4.2.2 Playwright

Similar to the test method for Lighthouse, Playwright tests can be triggered using a
script to unify the output �les. Listing 13 shows the implementation of this trigger
script. Project directories are de�ned and the test command is executed in the
directory with the con�gured environment variables. Playwright is told to not open
a report even if a test fails through PW_TEST_HTML_REPORT_OPEN.

1 // playwright -trigger.mjs

2 import { spawn } from 'child_process '

3

4 const projects = [

36

5 // ...

6 {

7 name: "IG Clone Svelte",

8 cwd: "ig -clone -svelte"

9 },

10]

11

12 const testArguments = [/* "/.* change \.spec\.js/" */]

13 function generateUriSafeTimestamp () {/* ... */ }

14 // ...

15

16 for (const project of projects) {

17 // ...

18 const now = new Date()

19 const reportDirectory =

`playwright -report -${generateUriSafeTimestamp ()}`

20

21 await new Promise(resolve => {

22 const testProcess = spawn("npm", ["run", "test:e2e",

... testArguments], {

23 cwd: project.cwd ,

24 shell: true ,

25 env: {

26 ... process.env ,

27 PW_TEST_HTML_REPORT_OPEN: 'never '

28 }

29 })

30 // ...

31 })

32 }

Listing 13: Trigger script for Playwright tests

1 // ig-clone -vue/playwright.config.js

2 import process from 'node:process '

3 import { defineConfig , devices } from '@playwright/test'

4

5 export default defineConfig ({

6 testDir: './ tests',

7 timeout: 60 * 1000,

8 expect: { timeout: 5000 },

9 retries: 2,

10 workers: 1,

11 reporter: [['html'], ['json', { outputFile:

'playwright -report/test -results.json' }]],

12 use: {

13 baseURL: 'http :// localhost :3000 ',

14 trace: 'on',

15 headless: true

16 },

17

18 projects: [

19 { name: 'Chromium ', use: {... devices['Desktop Chrome ']} },

20 { name: 'Firefox ', use: {... devices['Desktop Firefox ']} },

21 { name: 'Desktop Safari ', use: {... devices['Desktop Safari ']}

},

37

22 { name: 'Mobile Chrome ', use: {... devices['Pixel 5']} },

23 { name: 'Mobile Safari ', use: {... devices['iPhone 12']} },

24 { name: 'Microsoft Edge', use: {channel: 'msedge '} },

25 { name: 'Google Chrome ', use: {channel: 'chrome '} },

26],

27

28 webServer: {

29 command: 'vite build && serve -sd dist',

30 port: 3000,

31 reuseExistingServer: true

32 }

33 })

Listing 14: Playwright con�guration for Vue.js

The tests and test con�guration are similar for all frameworks. Listing 14 shows
how the test suite is con�gured. Timeouts are de�ned for all tests so that even
slowly loading pages are tested properly and retries are speci�ed to repeat failing
tests twice. The reason for this speci�cation is that �uctuating timings close to the
limit of failure should be tested multiple times to ensure that the test is supposed
to fail. Unfortunately, repetitions cannot be con�gured for the opposite case in
which the test passes because of �uctuations, but is supposed to fail on average.
All test executions and repetitions are con�gured to run in sequence to minimize the
in�uence of the availability of resources on the testing machine. This is especially
important because Playwright both opens the application in a browser and runs a
webserver for local tests. It is set to start a webserver, wait for its availability and
then open the application under the speci�ed baseURL. The webserver command,
port and baseURL are di�erent for every framework. The test con�guration also
speci�es a list of browsers to test the application in. For this study, seven browsers
were chosen based on the most used browsers (StatCounter, 2024) and their mobile
versions. The browsers are Chromium, Google Chrome, Mobile Chrome, Safari,
Mobile Safari, Microsoft Edge and Firefox.

The tests written for this application are threefold as they re�ect the separation
of performance metrics (see section 3.4). Listings 15, 17 and 19 show the test �les.

First, page load times are measured using page-load.spec.js (see listing 15).
Every de�ned route is opened in a browser window, the navigation timings are
extracted through a page.evaluate(<evalFunction>) method and the timings
are attached and annotated so that they can be read after the test execution. The
test for every page is that the timings loadEventEnd and domComplete are faster
than a time budget. The paths and time budget per page con�ged in pages.js (see
listing 16). To ensure a fast performance, the time budgets are de�ned to be under
two seconds for all pages. Because no network requests are made in the design of
the application on the About page, the time budget was lowered to 1.5 seconds
here.

1 // page -load.spec.js

38

2 import { test , expect } from '@playwright/test';

3 import routes from "./ pages.js"

4

5 test.describe("Load Time", () => {

6 for (const route of routes) {

7 test(`${route.name} loads within the page load budget `, { tag:

[`@${route.name}`, '@pageLoad '] }, async ({ page },

TestInfo) => {

8

9 await page.goto(route.path)

10 await page.waitForLoadState ()

11

12 const timing = await page.evaluate (() =>

performance.getEntriesByType('navigation '));

13 TestInfo.attach("timing.json", { body:

JSON.stringify(timing , null , 2), contentType:

"application/json" })

14

15 const [{ responseStart , responseEnd ,

domContentLoadedEventEnd , domComplete , loadEventEnd }] =

timing;

16

17 test.info().annotations.push({ type: 'Page Load Budget ',

description: `The time budget for this page was

${route.pageLoadBudgetMs}ms ` });

18 // ...

19

20 expect.soft(domComplete , `domComplete event should happen

within ${route.pageLoadBudgetMs}

ms `).toBeLessThanOrEqual(route.pageLoadBudgetMs)

21 expect.soft(loadEventEnd , `loadEventEnd event should happen

within ${route.pageLoadBudgetMs}

ms `).toBeLessThanOrEqual(route.pageLoadBudgetMs)

22 })

23 }

24 })

Listing 15: Test �le for page load times

1 // pages.js

2 const routes = [

3 { name: "Feed page", path: "/", pageLoadBudgetMs: 2000 },

4 { name: "About page", path: "/about", pageLoadBudgetMs: 1500 },

5 { name: "Create page", path: "/create", pageLoadBudgetMs: 2000 },

6 { name: "Profile page", path: "/user/@PeterPoster",

pageLoadBudgetMs: 2000 },

7]

8

9 export default routes;

Listing 16: Test pages con�guration

Second, dynamic-performance.spec.js describes how component load times
are measured. The same routes are opened after an initialization script is injected

39

into the browser window. Listings 17 and 18 show parts of the test de�nition and
the injected script. The latter waits for a speci�c element to appear in the DOM
that does not appear in the HTML skeleton, if it exists. The element in question
has a predetermined id. For Angular, Astro, Next.js, Svelte and Vue.js it is �app�,
for Nuxt it is �__nuxt� and for React it is �root�. Afterwards, it initializes a
MutationObserver on that element. Each observation is stored with an xpath, id
and the last mutation time. The mutation time is overwritten every time so that
only the latest update is recorded and the list of times is published as a member of
the window object. Recorded mutations are added or removed children, addition or
removal of the element itself and a changed attribute. Because the time of mutation
is only measured as the time di�erence to the addition of the application-speci�c
root element, the recorded times are an estimation of the execution time between
framework initialization and the latest DOM mutation.

The test script waits for ten seconds after the injection of the recording script
and then evaluates the recorded timings. The update times are also attached to the
test as a JSON �le so that they can be traced after the test context no longer exists.
In order for the test to pass for the page the latest DOM mutation needs to happen
within the page's load time budget. In order to trace the failing components more
easily, screenshots are taken of each slow HTML element. Additionally, a screenshot
of the whole page is taken in which slow elements are colored. Every screenshot
is then attached to the test. This method ensures that slow components can be
identi�ed visually even if the xpath and the id of the element changes between
component lifecycles or application builds.

1 // dynamic -performance.spec.js

2 import { test , expect } from '@playwright/test';

3 import routes from "./ pages"

4

5 test.describe("Dynamic load time", () => {

6 for (const route of routes) {

7 test(`Dynamic components on ${route.name} load within the load

budget `, { tag: [`@${route.name}`, '@componentLoad '] },

async ({ page }, TestInfo) => {

8 // Inject performance measurement script into the page

9 await page.addInitScript ({ path: './ tests/performance.js' })

10

11 // Go to the measured page

12 await page.goto(route.path)

13 await page.waitForLoadState('domcontentloaded ')

14

15 // Start evaluation

16 const latestUpdateComponents = await new Promise(resolve =>

setTimeout(resolve , 10_000)).then (() => {

17 // Return the sorted load times

18 return page.evaluate (() => {

19 if (! window.dynamic_component_performance) return null

20 // Sort the components by their latest dom update time

21 const sortedEntries =

Object.entries(window.dynamic_component_performance)

40

22 .map(([key , value]) => { return { id: key , ... value }

})

23 .sort((a, b) => a.lastUpdated - b.lastUpdated)

24 return sortedEntries

25 })

26 })

27

28 // Attach the measurements in JSON format

29 TestInfo.attach("update -times.json", { body:

JSON.stringify(latestUpdateComponents , null , 2),

contentType: "application/json" })

30

31 latestUpdateComponents.forEach(comp => {

32 const latestUpdateTime = comp.lastUpdated

33

34 // Assert the latest update occurs in time

35 return expect.soft(latestUpdateTime , `Component with

identifier ${comp.id} should load within

${route.pageLoadBudgetMs}

ms `).toBeLessThan(route.pageLoadBudgetMs)

36 })

37

38 // Create screenshots of slow components

39 const componentScreenshots = await Promise.all(

40 latestUpdateComponents.map((el) => {

41 if (el.lastUpdated > route.pageLoadBudgetMs) {

42 return

page.locator(el.id).screenshot ().then(screenshot =>

[el, screenshot])

43 }

44 }).filter(i => i)

45)

46

47 // Capture a screenshot of the whole page with highlighted

slow components

48 if (latestUpdateComponents.some(comp => comp.lastUpdated >

route.pageLoadBudgetMs)){

49 // ...

50 }

51

52 // Attach the screenshots of the slow components to the test

53 await Promise.all(componentScreenshots.map(([el,

screenshot]) => {

54 return TestInfo.attach(

`${el.id}-${el.lastUpdated}ms.png `, {body:

screenshot , contentType: 'image/png'})

55 })

56)

57 })

58 }

59 })

Listing 17: Test �le for component load times

1 // performance.js

2 let loadTimes = {}

41

3 let startTime = Date.now()

4

5 function observe(targetNode) {

6 // Options for the observer (which mutations to observe)

7 const config = { attributes: true , childList: true , subtree:

true };

8

9 // Callback function to execute when mutations are observed

10 const callback = (mutationList , observer) => {

11 for (const mutation of mutationList) {

12

13 if (mutation.type === "childList") {

14 const targetId = getId(mutation.target)

15

16 const skipAttribute =

17 mutation.target.attributes.skipperformance ?. value ||

18 mutation.target.attributes.skipPerformance ?. value

19

20 if (!(skipAttribute == true || skipAttribute == 'true')) {

21

22 if (mutation.addedNodes.length > 0) {

23 let addedElements =

Array.from(mutation.addedNodes).map(el =>

el.nodeName !== "#comment" && el.nodeName !==

"#text" ? getXPath(el) : el)

24 if (addedElements.length === 1) addedElements =

addedElements [0]

25

26 if (Array.from(mutation.addedNodes)) {

27 loadTimes[targetId] = { ... loadTimes[targetId],

lastUpdated: Date.now() - startTime , xpath:

loadTimes[targetId]?. xpath ||

getXPath(mutation.target) }

28

29 Array.from(mutation.addedNodes).forEach(node => {

30 try {

31 const nodeId = getId(node)

32 loadTimes[nodeId] = { ... loadTimes[nodeId],

lastUpdated: Date.now() - startTime , xpath:

loadTimes[nodeId]?. xpath || getXPath(node)}

33 } catch (e) {

34 console.warn(e)

35 }

36 })

37 }

38 }

39

40 else if (mutation.removedNodes.length > 0) {

41 // same as above ...

42 }

43

44 }

45

46 } else if (mutation.type === "attributes") {

47 const targetId = getId(mutation.target)

42

48

49 const skipAttribute =

50 mutation.target.attributes.skipperformance ?. value ||

51 mutation.target.attributes.skipPerformance ?. value

52

53 if (!(skipAttribute == true || skipAttribute == 'true')) {

54 loadTimes[targetId] = { ... loadTimes[targetId],

lastUpdated: Date.now() - startTime , xpath:

loadTimes[targetId]?. xpath ||

getXPath(mutation.target) }

55 }

56

57 }

58 }

59

60 window.dynamic_component_performance = loadTimes

61 };

62

63 // Create an observer instance linked to the callback function

64 const observer = new MutationObserver(callback);

65

66 // Start observing the target node for configured mutations

67 observer.observe(targetNode , config);

68 }

69

70 function getId(element) {/* ... */}

71 function getXPath(element) {/* ... */}

72

73 function reset () {

74 loadTimes = {}

75 startTime = Date.now()

76 }

77

78 let interval;

79

80 function initObservation () {

81 // The id of the targetNode has to be adapted to the framework

or application

82 const targetNode = document.getElementById("app")

83 if (targetNode) {

84 observe(targetNode)

85 if (interval) clearInterval(interval)

86 }

87 }

88

89 interval = setInterval(initObservation , 100)

90

91 // initialize window.dynamic_component_performance

92 window.dynamic_component_performance = loadTimes

Listing 18: Injected mutation recorder script

Third, tests in state-change.spec.js specify measurements for component
update times (see listing 19). In this test speci�cation, two other time budgets are

43

de�ned. The �rst update to the DOM and the slowest update to the DOM are
tested. The idea behind these time budgets is that users may perceive the �reaction
time� as the time frame in which their action had any e�ect or as the time frame
in which the e�ects of their actions �nish. To this end, user actions are de�ned in
combination with a route to perform these actions on. For this work, four actions
are de�ned on the Create page: The changing of the caption, the selection of an
image, the insertion of a media source URL and the creation of a new post, which
is a combination of caption change and media selection.

In order to evaluate the reaction speed to those user actions, the same muta-
tion recording script is injected as for component load times. The page is then
opened and the recorded mutation timings are reset. Afterwards, the user action
is performed and the new mutation times are extracted, attached to the test and
evaluated. The requirements for the tests to pass are that the earliest mutation
timing is within 100 ms of the user input and the latest mutation timing is within
500 ms of the user input. Again, screenshots are taken of all HTML elements that
were recorded as mutated and do not pass the tests. These screenshots are also
attached to the test in order to debug applications that do no pass the tests.

1 // state -change.spec.js

2 import { test , expect } from '@playwright/test';

3

4 const minReactionTime = 100;

5 const maxUpdateTime = 500;

6

7 const actions = [

8 {

9 route: '/create ',

10 inputActions: [

11 {

12 name: 'Caption Change ',

13 action: async (page) => {

14 const captionInputField = page.getByPlaceholder('Type

your caption here')

15 return captionInputField.fill('Lorem ipsum ...')

16 }

17 },

18 {

19 name: 'Media Selection ',

20 action: async (page) => {

21 const mediaSelector = page.locator('#preloaded -image ')

22 return mediaSelector.selectOption('moon.webp')

23 }

24 },

25 {

26 name: 'Media Source Insert ',

27 action: async (page) => {

28 const captionInputField = page.getByPlaceholder('Insert

your media URL here ...')

29 return captionInputField.fill(`${new URL(await

page.url()).origin }/abstract -circles.webp `)

44

30 }

31 },

32 {

33 name: 'Post Creation ',

34 action: async (page) => {

35 const mediaSelector = page.locator('#preloaded -image ')

36 const captionInputField = page.getByPlaceholder('Type

your caption here')

37 await mediaSelector.selectOption('moon.webp')

38 return captionInputField.fill('Lorem ipsum ...')

39 }

40 }

41]

42 }

43]

44

45 for (const actionGroup of actions) {

46 for (const inputAction of actionGroup.inputActions) {

47

48 test.describe(`State Change DOM Update: ${inputAction.name}`,

{ tag: [`@${inputAction.name.replace (/\s/g, '')}`,

'@stateChange '] }, () => {

49 let page;

50 let domUpdates = null;

51

52 test.beforeAll(async ({ browser }) => {

53 page = await browser.newPage ();

54 await page.addInitScript ({path: './ tests/performance.js'})

55

56 await page.goto(actionGroup.route)

57 await page.waitForLoadState('domcontentloaded ')

58

59 await new Promise(resolve => setTimeout(resolve , 3_000))

60 await page.evaluate (() => {reset ()})

61

62 await inputAction.action(page)

63

64 await new Promise(resolve => setTimeout(resolve , 5_000))

65 domUpdates = await page.evaluate (() => {

66 if (! window.dynamic_component_performance) return null

67

68 // Sort the components by their latest dom update time

69 const sortedEntries =

Object.entries(window.dynamic_component_performance)

70 .map(([key , value]) => { return { id: key , ... value }

})

71 .sort((a, b) => a.lastUpdated - b.lastUpdated)

72 return sortedEntries

73 })

74 });

75

76 test.afterAll(async () => {

77 await page.close ();

78 });

79

45

80 test(`User input triggers first update within

${minReactionTime} ms`, { tag: ['@minimalReactionTime ']

}, async ({ }, TestInfo) => {

81 expect(domUpdates).not.toBeNull ()

82 expect(domUpdates).not.toEqual ([])

83 const minReactionComp = domUpdates [0]

84

85 await TestInfo.attach(`domUpdates${TestInfo.retry > 0 ?

`_retry_${TestInfo.retry}` : ''}.json `, { body:

JSON.stringify(domUpdates , null , 2), contentType:

"application/json" })

86 await test.info().annotations.push({ type: `Fastest Update

${TestInfo.retry > 0 ? `(retry #${TestInfo.retry})` :

''}`, description: `Component with id

${minReactionComp.id} loaded

${minReactionComp.lastUpdated}ms after user input

(xPath: ${minReactionComp.xpath})` });

87 expect.soft(minReactionComp.lastUpdated , `Fastest updated

component with identifier ${minReactionComp.id} should

update within ${minReactionTime}

ms `).toBeLessThanOrEqual(minReactionTime)

88

89 if (domUpdates.some(comp => comp.lastUpdated >=

minReactionTime))

90 await test.info().annotations.push({ type: 'Hint',

description: `Screenshots below show slow updating

components ` });

91

92 // take screenshots of all elements in domUpdates

93 await Promise.all(

94 // ...

95)

96 })

97

98 test(`DOM updates triggered by state change finish within

${maxUpdateTime} ms`, { tag: ['@maximalReactionTime '] },

async ({ }, TestInfo) => {

99 expect(domUpdates).not.toBeNull ()

100 expect(domUpdates).not.toEqual ([])

101 const maxUpdateComp = domUpdates.at(-1)

102 await TestInfo.attach("domUpdates.json", { body:

JSON.stringify(domUpdates , null , 2), contentType:

"application/json" })

103 await test.info().annotations.push({ type: 'Slowest

Update ', description: `Component with id

${maxUpdateComp.id} loaded

${maxUpdateComp.lastUpdated}ms after user input (xPath:

${maxUpdateComp.xpath})` });

104

105 domUpdates.forEach(comp => {

106 expect.soft(comp.lastUpdated , `Component with identifier

${comp.id} should finish updates within

${maxUpdateTime}

ms `).toBeLessThanOrEqual(maxUpdateTime)

107 })

46

108

109 if (domUpdates.some(comp => comp.lastUpdated >=

maxUpdateTime))

110 await test.info().annotations.push({ type: 'Hint',

description: `Screenshots below show slow updating

components ` });

111

112 // take screenshots of all elements in domUpdates

113 await Promise.all(

114 // ...

115)

116 })

117 })

118 }

119 }

Listing 19: Test �le for component update times

5 Evaluation

The results of the tests are presented in this chapter. Each section describes the
test results as they correlate to the metric categories and load times. These results
are presented as summaries of results of the described test implementations.

5.1 Page Load Times

For page load times, the Total Byte Weight (TBW), Time To First Byte (TTFB),
observed domContentLoaded, Total Blocking Time (TBT), Observed Last Visual
Change (OLVC) and Largest Contentful Paint (LCP) are presented from the Light-
house reports and the loadEventEnd is deduced from the Playwright tests relating
to page load times. The results of Lighthouse tests are visualized per path in �g-
ure 7. On every path, each framework's application is tested once on Vercel and
once hosted locally with two exceptions. Nuxt is tested with its nuxt build and
nuxt generate build scripts (see table 2). Astro is tested locally with both dupli-
cate components (similar Astro and React components) and its mixed version, in
which the React components do not have Astro duplicates even if the component
is not dynamic. The version of Astro hosted on Vercel is the version with duplicate
components.

(a) The Total Byte Weight is presented in �gure 7a. Primarily, the great size of
the pages build with Nuxt stand out. Out of all four pages, this is mainly surprising
for the Create page because on initial load only one image has to be loaded. Yet
the Create page and the Pro�le page appear to be equal in byte size although
the latter has decidedly more images on it. Moreover, the byte size of the Pro�le
page decreases for Nuxt-generate, a characteristic of the two build structures that
cannot be found on the Feed page. The property of Nuxt, that the Create page is

47

(a) Total Byte Weight (TBW)

(b) Time To First Byte (TTFB)

(c) Time To Interactive (TTI)

Figure 7: Lighthouse test results in Google Chrome

48

(d) Observed DomContentLoaded

(e) Total Blocking Time (TBT)

Figure 7: Lighthouse test results in Google Chrome

as heavy as the Pro�le page, can be explained through the implementation of the
MediaComponent (see listing 21). All precon�gured image �les are imported using
import.meta.glob() (see listing 21, line 14). For this reason, the byte size of the page
is at least the size of all images on pages that use MediaComponent. Although this
import method is used with Nuxt, Astro and Svelte, Nuxt is the only framework
with which this behaviour seems to have this impact. Secondly, the About page has
a small byte size, which is not surprising because it has only one SVG as an image.

In general, pages from Next.js, Astro and Svelte have a small byte weight on the
Feed page as well as the Pro�le page, most likely due to successful image compres-
sion. The byte weight of the Create page and the Pro�le page is a representation
of how well the framework handles selecting which parts of the application have to
be loaded. For the Create page, eight out of the 15 components of the app have to
be loaded (nine out of 16 for Astro-duplicate) and �ve of 15 for the Pro�le page.
Interestingly, the Create page weighs less than the Pro�le page for most frameworks
except Nuxt.

49

(f) Largest Contentful Paint (LCP)

(g) Observed Last Visual Change (OLVC)

Figure 7: Lighthouse test results in Google Chrome

(b) The measurements of the Time To First Byte indicate clearly the response
time di�erence from locally hosted applications to applications hosted on Vercel
(see �gure 7b). To this end, the timings of the About page should be examined.
The di�erence in TTFB between local and Vercel lies around 185 ms with local
applications responding within 452-457 ms and Vercel responding within 632-651
ms. Taking this di�erence as reference for the normal time di�erence, additional
measurements stand out. Although the local webserver returns the �rst byte almost
equally fast on all paths, Nuxt-generate takes 80 ms longer than its sibling Nuxt-
build on the Feed page. The �rst response byte is registered 19 ms later on the
Feed page with Svelte than the other paths.

On Vercel, the TTFB �uctuates more between the frameworks. On the Feed
page, the frameworks can be separated into three groups. Astro, Nuxt-generate
and Svelte are the fastest with response times between 635 and 657 ms. Between
712 and 756 ms lie the times for Next.js, React, Nuxt-build and Vue.js. Angular

50

has the slowest response time on Vercel and on the Feed page with 882 ms. The
response times on Vercel on the Create page are increased for Astro to 10730 ms by
about 430 ms compared to its competitors. A similar increase is measured on the
Pro�le page with a TTFB for Astro on Vercel of 872 ms, about 230 ms later than
other frameworks.

(c) The Time To Interactive of the applications is shown in �gure 7c. In con-
trast to the TTFB, the TTI is faster on Vercel with the exception of React on the
Feed page and both React and Astro on the Pro�le page. Possible reasons for this
phenomenon include the content encoding, which is missing from local hosting, or
simply better traditional webserver performance such as parallelization of request
handling on Vercel. With these faster applications on Vercel, Astro, Svelte, Next.js
and Vue.js turn out to be the fastest frameworks for the Time To Interactive of the
application. In general, Astro appears to be the framework from which the appli-
cation has the fastest TTI across pages and hosting environments. Interestingly,
Vue.js, Nuxt, Svelte, Angular and Astro show small �uctuations between pages of
500 ms or less which is relatively little compared to Next.js and React.

(d) Figure 7d shows the average of observed times of the domContentLoaded
event. Two general characteristics stand out of the data. First, the timing of the
applications that are hosted locally are at least 45 ms earlier than the applications
hosted on Vercel. Second, the observedDomContentLoaded is measured to be much
earlier than the TTFB. The �rst observation can be explained by the slower net-
work speed. The order of TTFB and observed timing of the domContentLoaded
event goes back to throttling not being applied for Lighthouse metrics starting with
�observed� (Raine, 2024).

Astro on Vercel shows the latest domContentLoaded on Vercel except on the
About page. On the other hand, Astro locally shows some of the fastest times on
the About page and the Create page. Angular, Nuxt-build, Next.js and Svelte are
the other frameworks with late times for the event. In contrast, React, Vue.js and
Nuxt-generate build applications with earlier event times. Both measurement char-
acteristics can be explained by the rendering behaviour of the applications. Astro
returns the fully complete DOM in its initial HTML document, whereas the frame-
works of the second fastest group return half-complete HTML documents. These
frameworks demonstrate their rendering capabilities here. The fastest frameworks
for this metric respond to the request with HTML skeletons, which naturally re-
sults in early domContentLoaded events. Interestingly, Angular and Nuxt-generate
break this pattern. Angular generates an HTML skeleton for all pages that refer-
ences CSS and JS �les. The main di�erence to Vue.js, for example, is that the JS
modules are included in the HTML <body> for Angular and in the HTML <head>

for Vue.js. Additionally, all imports are lazy-loading with Vue.js and the scripts for
the Angular application are packed into fewer and bigger JS �les. Nuxt-generate on
the other hand does not return an empty HTML skeleton and is still in the group of
fastest frameworks for this metric. The main di�erence to other frameworks is that
JS �les are included in the HTML document with rel="modulepreload". Both of
these strategies appear to have a noticeable impact on the timing of the domCon-

51

tentLoaded event.

(e) The results of measurements for the Total Blocking Time show drastic dif-
ferences between the frameworks (see �gure 7e). On the one hand, the blocking
time is practically negligible for most frameworks on the About, Create and Pro-
�le page indicating no unnecessary code execution before rendering. On the other
hand, some frameworks show relatively large TBT, especially on the Feed page.
Firstly, Astro and Svelte are among the fastest frameworks in the TBT, although
Astro with duplicate components demonstrates a blocking time of 31 ms on the
Feed page. Secondly, the application built with React and Vue.js also have a short
blocking time. Thirdly, Angular produces an application with very low blocking
time when hosted locally using the serve command, but high blocking time when
hosted on Vercel. The latter two can be explained through an analysis of the scripts
and modules loaded and executed on page load. While Vue.js and React include
their scripts in smaller �les and only import scripts when needed, Angular bundles
JavaScript in fewer and bigger �les. This increases the blocking time, especially for
code that is not needed for the page.

The main outlier, however, is Next.js on the Feed and the Pro�le page. The TBT
of the application surpasses its next competitor's TBT by 254 ms on the Feed page
on Vercel, 164 ms on the Feed page locally and 56 ms on the Pro�le page on Vercel.
This is not de�nitively explainable, but the fact that this e�ect only greatly a�ects
pages in which images are included using the MediaComponent is an indicator. Im-
ages and videos are loaded using require(`@/assets/stock-footage/${src}`).default,
which is similar to React's require(`src/assets/stock-footage/${src}`) (see listing
20, line 16 and listing 22, line 13). The interpreted behaviour then is that both
applications load the multimedia �les synchronously, but Next.js also loads the
components synchronously, which results in such a high Total Blocking Time. This
would also explain why the e�ect is less on the local webserver.

(f) Unsurprisingly, the measurements for the Observed Last Visual Change
(OLVC) are also in general faster when the application is hosted locally (see �gure
7g). Next.js is the only exception to that on the Create page. Amongst the frame-
works, no clear separation can be identi�ed across the pages or hosting environment,
although Vue.js and React are always among the fastest in this metric compared
to other frameworks with the same hosting method. Additionally, Nuxt has the
slowest OLVC across pages, especially on the Feed page. However, the average of
Nuxt-build on Vercel is deceiving. The distribution of the OLVC measurements
of Nuxt-build throughout the 20 test repetitions clearly shows that most measure-
ments lie around 4500 ms rather than the average of all values which is 6012 ms.
Nonetheless, the OLVC of Nuxt is still far above the average of other frameworks.

(g) The average measurements for Largest Contentful Paint (LCP) are shown
in �gure 7f. In contrast to other presented metrics, the time of the LCP is in gen-
eral earlier for applications hosted on Vercel. However, both Astro implementations
regularly have a faster LCP locally than other frameworks on Vercel. Other than
that, Angular is the only framework with outlier measurements. The LCP mea-

52

surements are extraordinarily high on the Feed page when hosted locally and on
the Pro�le page independently from the hosting environment. There is no apparent
explanation for either characteristic at this time.

Angular 28/28
Astro 24/28
Next.js 28/28
Nuxt (build) 28/28
Nuxt (generate) 28/28
React 28/28
Svelte 24/28
Vue.js 28/28

Table 5: Passed Playwright page load tests per framework

The numbers of passed page load tests with Playwright are listed in table 5.
The only frameworks with which the application does not pass the tests are Astro
and Svelte. For both frameworks the page load budget is exceeded on all four
pages when opened in Firefox. The repetitions of failed tests also exceed the time
budget, which causes the tests to be marked as failed. Figure 8a shows the timings
of loadEventEnd across browsers, frameworks and pages, including test repetitions.
It is clear that these test results are outliers compared to other frameworks and
browsers. The load speed in Firefox is slower than the budget only for Astro and
Svelte. Upon inspection of other navigation event times, the reason for this results
becomes clear. The time of requestStart for the failing frameworks in Firefox is
already above 2000 ms for all pages. Interestingly, the timing of this navigation
event is not late for all other frameworks. This di�erentiating behaviour could not
be explained in the time frame of this study. However, the next step in the analytic
process was to inspect a dapted LoadEventEnd metric instead of inspecting the
raw measurement of the loadEventEnd. This balanced loadEventEnd time can be
described as

loadEventEnd balanced = loadEventEnd raw − requestStart (1)

Figure 8b shows the new balanced values. Using the balanced metric, all pages
from all frameworks are loaded within the page load time budgets and the tests
should pass. Still, di�erences can be found between frameworks and between
browsers. The overview over all results shows four di�erent patterns within a
browser. Unsurprisingly, Chromium and Mobile Chrome as well Desktop Safari
and Mobile Safari have similar results. They di�er mainly in the load times of As-
tro, Svelte and Angular pages. The third pattern can be found in Microsoft Edge
and Google Chrome. Pages load relatively fast in these two browsers especially with
Astro. The measurements made in Firefox do not resemble the ones made in other
browsers. This might indicate, that its rendering engine �Gecko� behaves di�erently
to �Blink� and �WebKit� which are used in the other browsers. First, the results are
slower on average and it is the only browser in which the load times of React pages

53

�uctuate more than 30 ms between pages. Second, the fastest times with React are
slower than the fastest times with Astro, Nuxt and Vue.js.

As for the frameworks, React is clearly the fastest relating to its loadEventEnd
in Chromium, Mobile Chrome, Desktop Safari and Mobile Safari and second fastest
in Microsoft Edge and Google Chrome. Vue.js is second fastest in most browsers and
also �uctuates very little. Nuxt, Next.js and Svelte are the next-fastest frameworks
across all browsers. Angular is one of the slowest frameworks for most pages and
browsers except some measurements of Astro. The fastest or the slowest measured
times are measured with Astro depending on the browsers, but always �uctuate
relatively much compared to other frameworks.

5.2 Component Load Times

The load time of components is an indicator for how well frameworks split resources
for the load of their applications between part of the pages. The relevant metrics
for the component load are Observed Last Visual Change (OLVC), Total Blocking
Time (TBT), Time To Interactive (TTI), the timing of loadEventEnd, Observed
First Visual Change (OFVC) and the measured DOM mutation times immediately
after the initial page load. To measure these metrics, the tests are executed as
described previously and documented as described in section 5.1. The same rules
for the presentations of the results apply in this section.

Because the same time frame is inspected as in the previous section, the relevant
metrics TBT, OLVC, TTI and balanced loadEventEnd can be used to analyze the
behaviour of component load (see �gures 7e, 7c, 7g and 8b). However, no new
interpretations can be taken for component load times because every measurement
that includes the complete page load might or might not be caused by slowly loading
components. Therefore, failed tests due to the time budget being exceeded cannot
be unequivocally attributed to either slow network speeds, browser behaviour, client
behaviour, the used framework or single components. Additional metrics are needed
to identify component load times.

The OFVC is the time after which the �rst visual change is made within the
viewport (see �gure 9a). It can be either the time after which prerendered HTML
elements appear or the time after which an empty DOM gets �lled through JS and
visual changes are made. The measurements of the OFVC show that, in general, the
�rst visual change is earlier for locally hosted applications, which is unsurprising
because the resources load earlier. Frameworks with an early OFVC are Astro,
React and Next.js with the only exception being Astro on Vercel on the Create page.
The Angular application on the other hand displays late OFVC values compared
to its competitors locally. On Vercel, Nuxt-build has relatively late values across
all pages.

54

(a) unbalanced

(b) balanced

Figure 8: Measured loadEventEnd timings

55

(a) Observed First Visual Change (OFVC)

(b) Observed Visual Change Duration (OVCD)

Figure 9: Observed First Visual Change (OFVC) (a) and Observed Visual Change
Duration (OVCD) (b)

More interesting than the raw OLVC and OFVC values is the di�erence between
the measurements. This thesis de�nes a new metric �Observed Visual Change Du-
ration�. It shows the time after the �rst visual mutation to the page has been bade
until the last visual change. It is simply deferred from the OLVC and OFVC and
is de�ned as

observedVisualChangeDuration =

observedLastVisualChange − observedFirstVisualChange (2)

56

Figure 9b shows the resulting values for the Observed Visual Change Duration
(OVCD) from this study. The great di�erence between locally tested applications
and applications on Vercel means that visual changes, especially the last, are depen-
dent on network delay or JavaScript execution speed. Vue.js, React and Angular
produce low OVCD measurements except on the Pro�le page. This is even the
case if the OFVC is late. The reason for this result is that no visual changes are
made to the page until the HTML and JS is parsed and executed. This stands in
contrast to prerendered, server-side rendered or semi-rendered pages. With these
pages, the �rst visual update can already be made after only the HTML is parsed.
Therefore CSR frameworks can achieve faster OVCD values on the pages without
components that have di�erently fast loading components. Notably, the Pro�le
page is an outlier among the pages. This is because the static header of the page
can be displayed as soon as possible, but the rest of the page needs two additional
service functions to �nish before images and videos can be loaded. The e�ect of
those chained JavaScript executions can clearly be identi�ed using the OVCD.

Figure 10: Component load mutation times

Figure 10 shows the DOM mutation times of elements that were registered
through Playwright right after the initial page load. Primarily, the most noticeable
result of these measurements is that some results appear to be missing. For exam-
ple, there are no measurements from the Angular application at all. The reason for
missing measurements could be that all DOM mutations have taken place before
the MutationObserver could be initialized because the injection of the recording
script through Playwright takes longer than the page load or all changes take place
before the �rst interval of 100 ms (see listing 18, line 89). The other possible reason
for this phenomenon could be that mutations are slower than the manually de�ned
recording time of ten seconds (see listing 17, line 16), but it is less likely because
no mutation is recorded to be over 1900 ms with any browser, page or framework.
Therefore, missing recordings indicate the framework is either loading too fast or too

57

slow to record DOM mutations. In addition, other results match the interpretation
(see section 5.3). Because the applications have di�erences in the DOM structure
and render time, the number of mutations �uctuates naturally. Adjusting for pos-
sible variations here, four frameworks seem to have missing measurements. The
applications built with Angular (no mutations), Astro (11 mutations), Vue.js (174
mutations) and React (527 mutations) have surprisingly few mutations. The ap-
plications built with Nuxt (1011 mutations), Next.js (1654 mutations) and Svelte
(1857 mutations) have over 1000 mutations. Although the latter numbers could
indicate full recording coverage of the mutations, the distribution of recordings be-
tween browsers and pages prove that not all mutations were recorded, even with
these latter three frameworks. For example, no mutations were recorded on the
About page with Nuxt and Next.js. In fact, Svelte is the only framework with
which mutations were recorded on the About page, but only in Mobile Chrome,
Chromium, Mobile Safari and Desktop Safari. Then again, there are apparently no
mutations with Svelte on the Pro�le page in any browser.

Although the missing data prevents some unambiguous comparisons between
frameworks, the presence of some recordings indicates load speed di�erences be-
tween frameworks and browsers. First, many relatively late recordings could be
made in Desktop Safari and Mobile Safari. This indicates that the method of mea-
surement results in slow DOM mutation times in these browsers, especially with
Svelte and Next.js. Additionally, in Microsoft Edge and Google Chrome only very
few measurements could be made, so the two browsers can be considered especially
fast for this measurement method. Second, Next.js appears to be the slowest of the
frameworks in this metric. Svelte also demonstrates slow mutations, but only in
Desktop Safari and Mobile Safari. The other frameworks that appear in the sum-
mary of mutations, Nuxt, React and Vue.js, also have some relatively high recorded
mutation times, but all recorded times are below 760 ms. With these frameworks,
the most interesting observation is that not only are the mutation times faster with
Microsoft Edge and Google Chrome, but they are also more bundled together than
with other browsers.

The last possible observation from the data is that no mutation time is below 100
ms. The implementation of the MutationObserver is the reason for this. Because
the start time is de�ned immediately and the interval callback is executed �rst after
a 100 ms delay, no mutation times below 100 ms can be recorded. Changing the
implementation to an interval of 20 ms and executing the initialization function
once immediately does allow for earlier recording times for few frameworks. The
tested applications built with Astro, Next.js, React, Svelte and Vue.js then have
recorded mutation times below 100 ms. The earliest recorded time with the 20 ms
interval is 41 ms with Vue.js on the About page in Microsoft Edge. Naturally, the
number of recordings also increases drastically for all frameworks except Angular.
42 mutations with Astro, 640 mutations with Vue.js, 1309 mutations with Nuxt,
1704 mutations with React, 2260 mutations with Next.js and 6412 mutations with
Svelte were recorded. The increase in early recordings and the minimum times per
framework support two interpretations relating to the interval time. First, quick
initialization intervals do make the recording more complete because fewer fast
mutations are not recorded. If these fast mutations are required to be present in

58

the test or its report, then decreasing the interval speed is a requirement. Second,
the minimal time becomes dependent on the initialization behaviour and speed.
The presence of fast data points for some frameworks cannot be de�nitively traced
back to the framework being faster than others because fast data points might still
be missing for other frameworks due to unreliable injection behaviour. In addition,
rapid initialization attempts require more resources and therefore might actually
decrease the performance of any code execution or rendering. For these reasons,
the con�guration of a initialization interval is a balance between the completeness
of DOM mutation recordings and comparability of fast mutations.

5.3 Component Update Times

Section 4.2 de�nes the update time of a component using the user input time and the
time of the DOMmutation. Only the mutation times were used in this study to keep
the method of measurement valid for as many applications frameworks as possible.
Because the user input action is delayed and the zero-time is reset beforehand (see
listing 19, lines 59 - 62), the punctual initialization of the MutationObserver is not
an issue when testing DOM mutations triggered by user inputs (as described in
section 5.2).

The number of mutation types to the DOM per user action are displayed in table
6. It is clear that the frameworks can be split into three distinct groups by number
of di�erent mutations. This list intentionally does not count identical mutations
such as appending another element to the list of elements in the post caption
of the preview. Angular and Next.js make the most changes to the DOM during
the user actions with 14 and 15 recorded mutations, respectively. Then, both Astro
and React have a similar number of mutations with nine mutations in total. This
similarity is not surprising because the Astro island of the CreateForm consists of
identical React components to the pure React application. The group of frameworks
with the least DOM mutations changes on six di�erent elements in the DOM in
total. They are Nuxt, Vue.js and Svelte. Tables 11, 12, 13 and 14 list the HTML
elements that were mutated after user input for all four user actions. Surprisingly,
the grouping of the frameworks does not translate directly to the speci�c mutated
elements. In general, each described group does update similar elements with similar
mutations, but they are not exact copies of each other in this regard.

Figure 11 presents the mutation times of each framework per browser with all
recorded times across user actions. The �rst results for this study is that almost all
frameworks do �nish mutating the DOM within the prede�ned time budget of 500
ms. Slower mutations do speed up in test repetitions. As a result, the Playwright
tests pass. In addition, the maximum time for mutations is decidedly dependent
on the browser. While Desktop Safari apparently is the slowest browser for DOM
mutations triggered by the user, especially with Next.js, almost all mutations in
Chromium, Microsoft Edge and Google Chrome even �nish within the time limit
for earliest mutations of 100 ms. Mobile Chrome also shows the same characteristics
with the exception of some mutations by Svelte and Next.js after the Post Creation
action.

Figure 12 contains the update times of the four user actions per browser and

59

A
n
g
u
la
r

A
st
ro

N
e
x
t.
js

N
u
x
t

R
e
a
ct

V
u
e
.j
s

S
v
e
lt
e

C
ap
ti
on

ch
an
ge

3
2

3
1

2
1

1
M
ed
ia

se
le
ct
io
n

3
1

3
1

1
1

1
M
ed
ia

so
u
rc
e
in
se
rt
io
n

3
2

3
1

2
1

1
P
os
t
cr
ea
ti
on

5
4

6
3

4
3

3

T
o
ta
l

14
9

15
6

9
6

6

Table 6: Total number of DOM mutation types per framework and user action

framework. A few generalizations are possible to extract from these results. For
the Caption Change (see �gure 12a), Nuxt appears to be the fastest framework on
all browsers except on Google Chrome where Next.js makes faster DOM mutations.
Astro is also a relatively fast framework in Microsoft Edge and Google Chrome, but
is is one of the slowest frameworks in Desktop Safari and Mobile Safari. In general,
Nuxt, Next.js, Vue.js, React and Angular make DOM mutations in under 70 ms
in Chromium, Mobile Chrome, Microsoft Edge and Google Chrome. Svelte on the
other hand is apparently the slowest framework for this user action on average. The
recorded DOM mutation times for Media Selection can be found in �gure 12b. Most
of the mutations are below the 100 ms time limit with only few exceptions. Astro is

60

Figure 11: Recorded DOM mutation timings after user actions

slower than the limit in Desktop Safari, Next.js is slower in Google Chrome, Mobile
Safari and Desktop Safari and Vue.js has an outlier measurement in Firefox. Here,
Nuxt, Vue.js, React, Angular and Svelte have similarly well to each other. Apart
from the mentioned outliers, the results from these frameworks lie between 38 and
85 ms. The measurements for the Media Source Insert action are very similar to
the Media Selection action (see �gure 12c). Again, Nuxt performs very fast in all
browsers and all frameworks are somewhat similar to each other except in Firefox,
Mobile Safari and Desktop Safari. The latter two are again the slowest browsers
on average and Firefox is the third slowest. In these browsers, Nuxt and Svelte
are the fastest frameworks. The Post Creation action is the slowest user action to
�nish (see �gure 12d), which is unsurprising because it is combined from two other
actions. It is therefore impossible to �nish faster than either single user action. The
update times for each user action can even be seen in two distinct groupings in the
recordings. For this action, Next.js is clearly the slowest framework in relation to
its competitors, but this di�erence is only signi�cant on Desktop Safari and Mobile
Safari.

Across all user actions, applications mutate the DOM slowest in Mobile Safari
and Desktop Safari, closely followed by Firefox. The other browsers Chromium,
Mobile Chrome, Google Chrome and Microsoft Edge lie very close to each other
and the average mutations times di�er from each other at a maximum of 15 ms.

Table 8 lists the minimal and maximal mutation times of the frameworks in each
browser, as well as the mean average for each combination. In addition, the mean
average and weighted averages of all minima, maxima and averages of mutation
times in each framework are calculated. The weighted averages are based on the
usage percentages of browsers (see table 7). These results indicate clearly that
Next.js produces the slowest mutations both on average and weighted average. In
contrast, Nuxt makes the fastest updates across browsers. Then, Angular comes
in second, Vue.js is third and React is the fourth-fastest framework. The second-

61

(a) Mutations after Caption Change

(b) Mutations after Media Selection

(c) Mutations after Media Source Insert

Figure 12: Recorded DOM mutation timings per framework

62

(d) Mutations after Post Creation

Figure 12: Recorded DOM mutation timings per framework

slowest framework on average is Astro, but it comes in faster than Svelte in the
ranking of frameworks when the weights are calculated in.

Browser Usage quota
Google Chrome 65.68 %
Desktop Safari 17.96 %
Microsoft Edge 5.26 %
Firefox 2,75 %
Chromium NA
Mobile Chrome NA
Mobile Safari NA

Table 7: Browser usage (StatCounter, 2024)

63

A
n
g
u
la
r

A
st
r
o

N
e
x
t.
js

N
u
x
t

R
e
a
c
t

S
v
e
lt
e

V
u
e
.j
s

F
r
a
m
e
w
o
r
k
A
v
g
.

4
4

5
1

4
7

3
9

4
4

3
8

5
1

4
5

6
9

7
1

7
5

6
6

5
8

7
4

7
7

7
0

C
h
ro
m
iu
m

9
5

8
9

1
0
8

9
4

8
5

9
5

1
0
4

9
6

5
4

6
3

5
9

5
9

5
4

6
0

5
2

5
7

8
9

9
9

1
4
2

8
3

8
4

9
4

8
2

9
6

F
ir
ef
o
x

1
2
3

1
4
2

2
3
5

1
0
8

1
8
1

1
2
9

1
0
3

1
4
6

7
7

8
7

7
9

5
1

8
4

7
0

4
7

7
1

1
2
3

1
7
0

3
0
4

8
6

1
6
9

1
6
4

1
3
6

1
6
4

D
es
k
to
p
S
a
fa
ri

1
7
2

2
7
0

4
9
3

1
2
4

2
8
0

2
8
3

2
0
0

2
6
0

4
4

4
9

4
7

4
2

4
4

4
5

4
6

4
5

6
7

6
9

9
4

6
1

6
7

8
1

6
9

7
3

M
o
b
il
e
C
h
ro
m
e

9
0

8
5

1
4
3

8
2

8
2

1
1
6

8
9

9
8

5
2

7
8

7
3

4
7

6
7

5
6

5
2

6
1

1
0
6

1
5
4

1
9
6

1
1
0

1
2
6

1
2
6

1
3
3

1
3
6

M
o
b
il
e
S
a
fa
ri

1
5
2

2
5
4

3
7
2

1
6
7

1
8
3

2
0
8

2
0
6

2
2
0

4
3

4
4

4
6

3
7

4
1

4
0

4
0

4
2

7
0

6
4

7
3

6
1

6
2

7
4

6
1

6
7

M
ic
ro
so
ft
E
d
g
e

9
0

8
0

1
3
4

8
5

7
5

1
0
2

7
9

9
3

4
1

4
3

4
1

3
4

4
0

3
9

3
7

3
9

6
2

5
7

6
9

6
0

5
9

6
4

6
1

6
2

G
o
o
g
le
C
h
ro
m
e

8
4

7
2

9
9

7
7

7
7

8
9

7
7

8
2

5
1

5
9

5
6

4
4

5
3

5
0

4
6

8
4

9
8

1
3
6

7
5

8
9

9
7

8
8

B
ro
w
se
r
A
v
g
.

1
1
5

1
4
2

2
2
6

1
0
5

1
3
8

1
4
6

1
2
3

4
5

4
8

4
5

3
5

4
5

4
2

3
6

6
9

7
4

1
0
7

6
0

7
5

7
8

7
0

W
ei
g
h
te
d
B
r.

A
v
g
.

9
4

1
0
3

1
6
7

8
0

1
1
0

1
1
8

9
3

Framework

minimum with framework in browser

average with framework in browserBrowser

maximum with framework in browser

average of minima across browsers

total average across browsersBrowser Average

average of maxima across browsers

Table 8: Minimum, average and maximum of recorded mutation times after user
input in milliseconds (fastest times are highlighted green, slowest red)

64

As indicated earlier, Google Chrome and Microsoft Edge are the fastest and
Desktop Safari and Mobile Safari are the slowest browsers across frameworks on
average. The highlighted fastest and slowest values for minimum, mean average
and maximum recorded mutation times verify these assessments. The fastest times
are all recorded in Google Chrome and slowest in Desktop Safari. Notably, both
the slowest �rst mutation and the fastest average and last mutation are recorded
in Astro. Based on the average per browser, the ranking of fastest browsers by
component update time is as follows:

1. Google Chrome

2. Microsoft Edge

3. Chromium

4. Mobile Chrome

5. Firefox

6. Mobile Safari

7. Desktop Safari

6 Summary

The previous chapter has presented the results to the proposed measurements. The
purpose of this chapter is to summarize the results as to which framework performs
well in which metric category and in which browser the applications perform well.
Table 9 displays the number of passed, failed and �aky tests. Flaky tests fail at least
once, but pass in any of the test repetitions. Across all Playwright tests, Angular
and Nuxt share the �rst place of most passed tests, Next.js is third-fastest and the
fourth place is shared by React and Vue.js. The fewest tests are passed by Svelte
and Astro with 4 failed tests and 6 failed tests, respectively.

Passed Flaky Failed
Angular 112 0 0
Nuxt 112 0 0
Next.js 111 0 1
React 110 2 0
Vue.js 110 2 0
Svelte 108 0 4
Astro 103 3 6

Table 9: Total passed, �aky and failed Playwright tests per framework

Concerning the page load behaviour, the results do not favor any one framework.
Frameworks that have fast load times when being inspected through one metric,
demonstrate worse performances in other metrics. In their Total Byte Weight,

65

Next.js, Astro and Svelte are the leading frameworks with their small byte size.
Svelte, Next.js, Vue.js and especially Astro have fast Time To Interactive results in
this application. In Addition, Astro, Angular, Svelte, Nuxt and Vue.js stand out
through little �uctuations in TTI across pages and test repetitions. Astro and Svelte
also beat their competition in Total Blocking Time. In contrast, Vue, React and
Nuxt are the fastest frameworks when the domContentLoaded or raw loadEventEnd
events are timed. These metrics show the weaknesses of Astro and Svelte. Vue.js
and React are also the fastest frameworks in OLVC. Within these metrics, rankings
of the frameworks can be created, even if the rankings do not match across metrics.
Other metrics in the category do not support such a ranking. For example, the Time
To First Byte also shows a dependency on the page content and host, which often
in�uences the results more than the chosen framework. However, Astro, Next.js
and Angular show slow results. The balanced loadEventEnd highlights Vue.js and
React positively, but also demonstrates the di�erences between browsers clearly.

The metrics for the component load time have similar characteristics. Over-
lapping metrics (TBT, OLVC, TTI and loadEventEnd) focus positively on Astro,
Svelte, Vue.js, React and Next.js, but they do not all have good results in every
one of those metrics. The OFVC of the applications are early in Astro, React
and Next.js. Only React translates this dominant property over its competitors to
OVCD, where it is joined by Vue.js and Angular. These groupings of frameworks
in OFVC, OLVC and OVCD is due to the fact that performing well in all three
metrics is very di�cult to achieve. The recordings of early DOM mutations favor
Angular, Astro, Vue.js and React based on their CSR.

In contrast, the measurements made for the component update times do in-
dicate clear rankings of frameworks and browsers. Nuxt, Vue.js and Svelte are
economical with DOM mutations. The other tested frameworks Next.js, React,
Angular and Astro mutate the DOM more often. However, the times of mutations
are close to each other except in in Mobile Safari and Desktop Safari. In only
these two browsers, Next.js is the slowest and Nuxt is the fastest framework. The
recorded times of DOM mutations permit the creation of rankings of browsers and
frameworks. The browsers rank fastest to slowest Google Chrome, Microsoft Edge,
Chromium, Mobile Chrome, Firefox and Mobile Safari and then Desktop Safari.
Judging from this ranking, it is the easiest to test below a prede�ned time budget
in Google Chrome and hardest in Desktop Safari. The resulting ranking of frame-
works for the component update times of the example application is from fastest to
slowest Nuxt, Angular, Vue.js, React, Astro/Svelte and Next.js. This ranking can
in�uence the choice of frameworks for user input heavy applications. For this kind
of web application, Nuxt, Angular, Vue.js and React present themselves as the best
choices in regard of component update times.

7 Concluding remarks

This thesis has presented a study comparing mainstream JavaScript frameworks
based on an example application. To this end, a web application was designed based
on the Android mobile app of Instagram and three rendering phases were identi�ed

66

to categorize measurement: the page load as representative for pure HTML web-
sites, the load time of JavaScript components and the update time of JavaScript
components. In this study, Angular, Astro, Next.js, Nuxt, React, Svelte and Vue.js
were contrasted with each other. The measurement results show that the results
are not clear-cut towards any framework, but rather indicate tendencies of load
and update speeds of frameworks, browsers, page types, hosting environments and
implementation. All frameworks display strengths in at least one metric relating
to page and component load. Component update time is the only metric category
outlining fast and slow frameworks, as well as browsers. Google Chrome and Mi-
crosoft Edge turn out to be the fastest of the compared browsers and Nuxt appears
to be the fastest framework. On the other end of the spectrum, Mobile Safari and
Desktop Safari as well as Next.js produce slow component update times.

Because the framework choice appears to be dependent on more than just the
framework itself, some considerations can be recommended for it. Before choosing
a framework for new projects, the browser usage of users should be taken into
consideration, especially with Mobile Safari and Desktop Safari. If the used browsers
are known, budgets for any tested metrics should be adapted to match expectations
based on the results presented in this study. Additionally, results have shown that
performance measurements �uctuate to up to 30 % in either direction. Therefore,
all performance tests should be executed multiple times before a test should be
considered passing. This recommendation should especially be considered when
comparing frameworks, as shown in this work.

Future works might �nd solutions for uncovered di�culties with testing strate-
gies and missing data in this study. First, the measurements do not cover navigation
between the pages, but only the load behaviour of single pages. The current expec-
tation is that navigation measurements would favor Angular applications because
no additional JavaScript �les have to be loaded on navigation to another page.
Especially the byte weight of pages might be compensated in favor of Angular for
this reason. Second, the actual time between updates to the application's state
and visual changes in the user's viewport are skipped in this study with the goal
of keeping measurement methods as open as possible. Solutions to this end include
white-box testing and might involve triggering custom events on state updates that
are registerable in a testing suite. Third, the interpretations of test results uncov-
ered trade-o�s relating to the initialization and end of recording. A slow interval
for initialization of the MutationObserver for DOM mutations makes results com-
parable to other test execution, but also leads to missing data for early mutations
between injection of the recording script and initialization of the MutationObserver.
This might be solved through a di�erent initialization process, e.g. including the
recording script into the application's code. Additionally, the end of the record-
ing time frame has two possible con�icts. Components that load slower than ten
seconds are not recorded at all and components that update periodically, such as
a digital clock component, are also not properly recorded. For the former, no so-
lution is currently apparent except a longer recording, which does not fully solve
the problem. A solution for the latter con�ict is implemented by setting a custom
HTML attribute skipPerformance="true" to elements that should be ignored for
the recording. A di�erent approach might open opportunities to improve the reg-

67

istration of a fully loaded application in test suites apart from the events of the
HTML standard. Lastly, this study only covers four pages of a single application,
two hosting environments and up to 20 repetitions per Lighthouse test and three
repetitions of Playwright tests if the test fails. Future work should verify the results
by repeating the measurements of the example application of this study with more
test runs to eliminate �uctuations. Also, insights into di�erences in performance
and considerations for tests might be gained through the addition of pages for all
page types and the usage of other hosting environments.

68

A Acknowledgements

I would to thank the following people, without whom I would not have been able
to complete this thesis, and without whom I would not have made it through my
masters degree: My supervisors Prof. Dr. Toenniessen, for his enthusiasm and
patience and the opportunity to pursue this topic, and Stephan Soller for his hu-
morous approach to web development, his guidance and his ability to put problems
into context.

Nikolai Thees, M.Sc, and Dominik Ratzel, B.Sc, for their support in the creation
process of this thesis, without whom it would never have this few errors it has now
(hopefully). To my best friend Erik for reminding me that it could always be worse.
My partner Anna-Lena - I simply could not have done it without your calmness and
straight-forwardness, special thanks. My father Dr. Bernhard Nicklaus for never
letting any of my lazyness slide. And to my parents, who sent me o� on the road
to this M.Sc. - what feels like a very long time ago.

B Listings

1 About page in Vue.js (as displayed in �gure 5) 25
2 Create page in Vue.js (Template) 26
3 Create page in Vue.js (Script) . 27
4 Post in Vue.js (Template) . 27
5 Post in Vue.js (Script) . 28
6 Create page in Astro (Frontmatter) 29
7 Create page in Astro (HTML) . 29
8 Create form in Astro . 30
9 MediaComponent in Vue.js (Template) 31
10 MediaComponent in Vue.js (Script) 32
11 Automation script for Lighthouse tests 34
12 Test con�guration for Lighthouse tests 35
13 Trigger script for Playwright tests 36
14 Playwright con�guration for Vue.js 37
15 Test �le for page load times . 38
16 Test pages con�guration . 39
17 Test �le for component load times 40
18 Injected mutation recorder script 41
19 Test �le for component update times 44
20 MediaComponent in Next.js . 70
21 MediaComponent in Nuxt (Script) 71
22 MediaComponent in React . 71

69

1 // MediaComponent.js

2 import { createRef , useEffect , useState } from "react";

3 import styles from "./ MediaComponent.module.css"

4 import Image from "next/image";

5 import { playPauseVideo } from "@/utils/autoplay";

6

7 const MediaComponent = ({ src , alt , width , height , className , id,

priority = false }) => {

8 let [mediaSource , setMediaSource] = useState("")

9 let videoRef = createRef ()

10

11 useEffect (() => {

12 if (videoRef.current) playPauseVideo(videoRef.current)

13 try {

14 if (src.startsWith('http')) setMediaSource(src)

15 else setMediaSource(

16 require(`@/assets/stock -footage/${src}`).default

17)

18 } catch (error) {

19 setMediaSource("")

20 }

21 }, [videoRef , src])

22

23

24 if (

25 mediaSource &&

26 (

27 (mediaSource.src && mediaSource.src.endsWith('jpg')) ||

28 (src.startsWith('http') && src.endsWith('jpg'))

29)

30) return (

31 <div style ={{ position: "relative", aspectRatio: 1, width:

width == "100%" ? width : `${width}px`, overflow: "hidden"

}} id={id} className ={[className , styles.postMedia].join("

")}>

32 <Image priority ={ priority}

placeholder ={src.startsWith('http') ? "empty" : "blur"}

quality ={50} src={ mediaSource} alt={alt}

width ={width.endsWith("%") ? 600 : width} height ={ height

|| (width.endsWith("%") ? 600 : width)} />

33 </div >

34)

35 else if (mediaSource && mediaSource.endsWith('mp4')) return (

36 <video ref={ videoRef} key={ mediaSource} className ={[className ,

styles.postMedia].join(" ")} id={id} width ={width}

preload="metadata" controls

controlsList="nodownload ,nofullscreen ,noremoteplayback"

disablePictureInPicture loop muted >

37 <source src={ mediaSource} type="video/mp4" />

38 </video >

39)

40 else return (

41 <div className ={ styles.mediaError}>

42 <p>Nothing to see yet...
Choose an image to

continue!</p>

70

43 </div >)

44 }

45

46 export default MediaComponent

Listing 20: MediaComponent in Next.js

13 // MediaComponent.vue

14 const glob = import.meta.glob("~/ assets/stock -footage /*.mp4", {

eager: true });

15 const media = Object.fromEntries(

16 Object.entries(glob).map (([key , value]) => [

17 key.split("/")[key.split("/").length - 1],

18 value.default ,

19])

20);

21

22 export default {

23 name: "MediaComponent",

24 props: {

25 src: { type: String },

26 alt: { type: String , default: "" },

27 width: String ,

28 height: String ,

29 preset: String ,

30 priority: { type: Boolean , default: false },

31 },

32 computed: {

33 mediaSource () {

34 if (this.src.endsWith(".mp4")) return media[this.src];

35 return this.src;

36 },

37 },

38 mounted () {

39 const video = this.$refs.video;

40 if (video) playPauseVideo(video);

41 },

42 };

Listing 21: MediaComponent in Nuxt (Script)

1 // MediaComponent.js

2 import { createRef , useEffect , useState } from "react";

3 import styles from "./ MediaComponent.module.css"

4 import { playPauseVideo } from "src/utils/autoplay";

5

6 const MediaComponent = ({ src , alt , width , height , className , id,

priority = false }) => {

7 let [mediaSource , setMediaSource] = useState("")

8 const videoRef = createRef ()

9

10 useEffect (() => {

71

11 if (videoRef.current) playPauseVideo(videoRef.current)

12 try {

13 setMediaSource(src.startsWith('http') ? src :

require(`src/assets/stock -footage/${src}`))

14 } catch (error) {

15 setMediaSource("")

16 }

17 }, [src , mediaSource , videoRef])

18

19

20 if (mediaSource.endsWith('webp')) return (

21 <img loading ={ priority ? "eager" : "lazy"} src={ mediaSource}

alt={alt} width ={width} height ={ height}

className ={[className , styles.postMedia].join(" ")} id={id}

/>

22)

23 else if (mediaSource.endsWith('mp4')) return (

24 <video ref={ videoRef} className ={[className ,

styles.postMedia].join(" ")} id={id} width ={width}

preload="metadata" controls

controlsList="nodownload ,nofullscreen ,noremoteplayback"

disablePictureInPicture loop muted >

25 <source src={ mediaSource} type="video/mp4" />

26 </video >

27)

28 else return (

29 <div className ={ styles.mediaError} styles ={{ height: (height ?

height + 'px' : '300px'), width: width.endsWith("%") ?

width : width + "px" }}>

30 <p>Nothing to see yet...
Choose an image to

continue!</p>

31 </div >

32)

33 }

34

35 export default MediaComponent

Listing 22: MediaComponent in React

72

C List of Figures

1 Screenshots of the NotInstagram application's pages (path in paren-
theses) . 10

2 Pages, components and services of the NotInstagram application . . 11
3 Classes used by the NotInstagram services 11
4 Timing attributes de�ned by the PerformanceTiming interface and

the PerformanceNavigation interface (W3C, 2012) 14
5 Graphical subdivision of the About page into components 24
6 Adapted component structure for Astro Islands 31
7 Lighthouse test results in Google Chrome 48
7 Lighthouse test results in Google Chrome 49
7 Lighthouse test results in Google Chrome 50
8 Measured loadEventEnd timings . 55
9 Observed First Visual Change (OFVC) (a) and Observed Visual

Change Duration (OVCD) (b) . 56
10 Component load mutation times . 57
11 Recorded DOM mutation timings after user actions 61
12 Recorded DOM mutation timings per framework 62
12 Recorded DOM mutation timings per framework 63

73

D Acronyms

CI/CD Continuous Integration and Continuous Deliv-
ery.

CLI Command Line Interface.
CSR Client-side Rendering.
CSS Cascading Style Sheet.

DOM Document Object Model.

FVC First Visual Change.

HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.

JS JavaScript.
JSON JavaScript Object Notion.

LCP Largest Contentful Paint.
LVC Last Visual Change.

OFVC Observed First Visual Change.
OLVC Observed Last Visual Change.
OVCD Observed Visual Change Duration.

PWA Progressive Web App.

SEO Search Engine Optimization.
SSR Server-side Rendering.
SVG Support Vector Graphic.

TBT Total Blocking Time.
TBW Total Byte Weight.
TTFB Time To First Byte.
TTI Time To Interactive.

URL Uniform Resource Locator.

74

E References

Aqeel, W., Chandrasekaran, B., Feldmann, A., and Maggs, B. M. (2020). On land-
ing and internal web pages: The strange case of jekyll and hyde in web performance
measurement. In Proceedings of the ACM Internet Measurement Conference, IMC
'20, page 680�695, New York, NY, USA. Association for Computing Machinery.

Bierman, G., Abadi, M., and Torgersen, M. (2014). Understanding typescript. In
Jones, R., editor, ECOOP 2014 � Object-Oriented Programming, pages 257�281,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Chopin, S., Parsa, P., Roe, D., Fu, A., Lichter, A., Wilton, H., Lucie, and Huang, J.
(2024). Installation. https://nuxt.com/docs/getting-started/installation.
accessed 08/07/2024.

Crook, T., Frasca, B., Kohavi, R., and Longbotham, R. (2009). Seven pitfalls to
avoid when running controlled experiments on the web. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD '09, page 1105�1114, New York, NY, USA. Association for Computing
Machinery.

Devographics (2024). State of javascript 2023. https://2023.stateofjs.com/

en-US/libraries/front-end-frameworks/. accessed 07/29/2024.

Domènech, J., Gil, J. A., Sahuquillo, J., and Pont, A. (2006). Web prefetching
performance metrics: A survey. Performance Evaluation, 63(9):988�1004.

Gerpott, T. J. (2018). Relative �xed internet connection speed experiences as an-
tecedents of customer satisfaction and loyalty: An empirical analysis of consumers
in germany. Management & Marketing, 13(4):1150�1173.

Google (2019a). Eliminate render-blocking resources. https://developer.

chrome.com/docs/lighthouse/performance/render-blocking-resources. ac-
cessed 08/01/2024.

Google (2019b). Lighthouse variability. https://developers.google.com/web/
tools/lighthouse/variability. accessed 08/01/2024.

Google (2020). Largest contentful paint. https://developer.chrome.com/docs/
lighthouse/performance/lighthouse-largest-contentful-paint. accessed
07/28/2024.

Google LLC (2024). Setting up the local environment and workspace. https:

//angular.dev/tools/cli/setup-local. accessed 08/07/2024.

Grigorik, I. (2013). High Performance Browser Networking. O'Reilly Media, Inc.,
1005 Gravensetin Highwy North, Sebastopol, CA 95472.

Instagram from Meta (2024). Instagram. https://www.instagram.com/. accessed
08/02/2024.

75

https://nuxt.com/docs/getting-started/installation
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://developer.chrome.com/docs/lighthouse/performance/render-blocking-resources
https://developer.chrome.com/docs/lighthouse/performance/render-blocking-resources
https://developers.google.com/web/tools/lighthouse/variability
https://developers.google.com/web/tools/lighthouse/variability
https://developer.chrome.com/docs/lighthouse/performance/lighthouse-largest-contentful-paint
https://developer.chrome.com/docs/lighthouse/performance/lighthouse-largest-contentful-paint
https://angular.dev/tools/cli/setup-local
https://angular.dev/tools/cli/setup-local
https://www.instagram.com/

Krishnamurthy, B. and Wills, C. E. (2000). Analyzing factors that in�uence end-
to-end web performance. Computer Networks, 33(1):17�32.

Li, Z., Zhang, M., Zhu, Z., Chen, Y., Greenberg, A., and Wang, Y.-M. (2010).
Webprophet: automating performance prediction for web services. In Proceedings
of the 7th USENIX Conference on Networked Systems Design and Implementation,
NSDI'10, page 10, USA. USENIX Association.

MDN Mozilla (2024a). Intersectionobserver. https://developer.mozilla.org/
en-US/docs/Web/API/IntersectionObserver. accessed 08/06/2024.

MDN Mozilla (2024b). Render-blocking. https://developer.mozilla.org/

en-US/docs/Glossary/Render_blocking. accessed 08/09/2024.

Meenan, P., Viscomi, R., Calvano, P., Pollard, B., and Ostapenko, M. (2024).
Http archive: Page weight. https://httparchive.org/reports/page-weight.
accessed 09/03/2024.

Menasce, D. (2002). Load testing of web sites. IEEE Internet Computing, 6(4):70�
74.

Meta Platforms, Inc. (2024). Getting started. https://legacy.reactjs.org/

docs/getting-started.html. accessed 08/07/2024.

Pourghassemi, B., Amiri Sani, A., and Chandramowlishwaran, A. (2019). What-
if analysis of page load time in web browsers using causal pro�ling. Proc. ACM
Meas. Anal. Comput. Syst., 3(2).

Raine, A. (2024). Why are the metric values with observed di�erent from
those without observed? https://github.com/GoogleChrome/lighthouse/

discussions/14190#discussioncomment-3093932. accessed 08/18/2024.

Schott, F. K. (2024a). Astro islands. https://docs.astro.build/en/concepts/
islands/. accessed 09/03/2024.

Schott, F. K. (2024b). Install and set up astro. https://docs.astro.build/en/
install-and-setup/. accessed 08/07/2024.

StatCounter (2024). Quick start. https://gs.statcounter.com/. accessed
07/18/2024.

Subraya, B. (2006). Integrated Approach to Web Performance Testing: A Practi-
tioner's Guide. Idea Group Inc., 701 E Chocolate Avenua, Suite 200, Hershey PA
17033-1240.

Sundaresan, S., Feamster, N., Teixeira, R., and Magharei, N. (2013). Community
contribution award � measuring and mitigating web performance bottlenecks in
broadband access networks. In Proceedings of the 2013 Conference on Internet
Measurement Conference, IMC '13, page 213�226, New York, NY, USA. Associa-
tion for Computing Machinery.

76

https://developer.mozilla.org/en-US/docs/Web/API/IntersectionObserver
https://developer.mozilla.org/en-US/docs/Web/API/IntersectionObserver
https://developer.mozilla.org/en-US/docs/Glossary/Render_blocking
https://developer.mozilla.org/en-US/docs/Glossary/Render_blocking
https://httparchive.org/reports/page-weight
https://legacy.reactjs.org/docs/getting-started.html
https://legacy.reactjs.org/docs/getting-started.html
https://github.com/GoogleChrome/lighthouse/discussions/14190#discussioncomment-3093932
https://github.com/GoogleChrome/lighthouse/discussions/14190#discussioncomment-3093932
https://docs.astro.build/en/concepts/islands/
https://docs.astro.build/en/concepts/islands/
https://docs.astro.build/en/install-and-setup/
https://docs.astro.build/en/install-and-setup/
https://gs.statcounter.com/

Svelte (2024). Introduction. https://svelte.dev/docs/introduction. accessed
08/07/2024.

Vercel, Inc. (2024). Installation. https://nextjs.org/docs/getting-started/
installation. accessed 08/07/2024.

W3C (2012). Navigation timing. https://www.w3.org/TR/navigation-timing/.
accessed 07/10/2024.

Web Hypertext Application Technology Working Group (2024). Html
living standard. https://html.spec.whatwg.org/multipage/dom.html#

current-document-readiness. accessed 07/30/2024.

You, Evan (2024). Quick start. https://vuejs.org/guide/quick-start.html.
accessed 08/07/2024.

Zhou, M., Giyane, M., and Nyasha, M. (2013). E�ects of web page contents on
load time over the internet. International Journal of Science and Research (IJSR),
pages 2319�7064.

GitHub repository: All code and additional material can be found under
https://github.com/andreasnicklaus/master.

77

https://svelte.dev/docs/introduction
https://nextjs.org/docs/getting-started/installation
https://nextjs.org/docs/getting-started/installation
https://www.w3.org/TR/navigation-timing/
https://html.spec.whatwg.org/multipage/dom.html#current-document-readiness
https://html.spec.whatwg.org/multipage/dom.html#current-document-readiness
https://vuejs.org/guide/quick-start.html
https://github.com/andreasnicklaus/master

F List of Tables

1 List of selected frameworks. Items with both Client-side Rendering
(CSR) and Server-side Rendering (SSR) render some pages or com-
ponents upon request, but also require Client-side Rendering (CSR).
Previous Experience refers to the author's experience in developing
web applications with the framework. 12

2 Build and host command for each used framework as used for testing
the applications hosted locally . 15

3 Assignment of metrics to the metric categories 17
4 Assignment of metrics to the test tools 22
5 Passed Playwright page load tests per framework 53
6 Total number of DOM mutation types per framework and user action 60
7 Browser usage (StatCounter, 2024) 63
8 Minimum, average and maximum of recorded mutation times after

user input in milliseconds (fastest times are highlighted green, slowest
red) . 64

9 Total passed, �aky and failed Playwright tests per framework 65
11 List of recorded mutations during caption change (empty cells indi-

cate that an element is not present, �-� indicates no mutations) . . . 79
12 List of recorded mutations during media selection (empty cells indi-

cate that an element is not present, �-� indicates no mutations) . . . 80
13 List of recorded mutations during media source insertion (empty cells

indicate that an element is not present, �-� indicates no mutations) . 81
14 List of recorded mutations during post creation (empty cells indicate

that an element is not present, �-� indicates no mutations) 82

78

H
T
M
L
e
le
m
e
n
t

A
n
g
u
la
r

A
st
ro

N
e
x
t.
js

N
u
x
t

R
e
a
ct

V
u
e
.j
s

S
v
e
lt
e

<
m
a
i
n
>

-
-

-
-

-
-

-
C
re
at
e-
C
om

p
on
en
t

-
-

<
f
o
r
m
>

at
tr
ib
u
te

-
-

-
-

-
-

<
i
n
p
u
t
>

-
-

at
tr
ib
u
te

-
-

-
-

<
s
e
l
e
c
t
>

-
-

-
-

-
-

-
<
t
e
x
t
a
r
e
a
>

at
tr
ib
u
te

te
x
t-
co
n
te
n
t

te
x
t-
co
n
te
n
t

-
te
x
t-
co
n
te
n
t

-
-

<
b
u
t
t
o
n
>

-
-

-
-

-
-

-
P
os
t-
<
d
i
v
>

-
-

-
M
ed
ia
C
om

p
on
en
t-
<
d
i
v
>

-
-

<
i
m
g
>
/
<
p
i
c
t
u
r
e
>

-
-

-
-

-
-

-
C
ap
ti
on
-<
p
>

ch
il
d

ch
il
d

ch
il
d

ch
il
d

ch
il
d

ch
il
d

ch
il
d

C
ap
ti
on
-<
s
p
a
n
>

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

-
(n
ot

u
p
d
at
ed
)

8
7

6
7

6
8

8

at
tr
ib
u
te

2
0

1
0

0
0

0
te
x
t-
co
n
te
n
t

0
1

1
0

1
0

0
ad
d
ed

1
1

1
1

1
1

1

T
o
ta
l
C
h
a
n
g
e
s

3
2

3
1

2
1

1

Table 11: List of recorded mutations during caption change (empty cells indicate
that an element is not present, �-� indicates no mutations)

79

H
T
M
L
e
le
m
e
n
t

A
n
g
u
la
r

A
st
ro

N
e
x
t.
js

N
u
x
t

R
e
a
ct

V
u
e
.j
s

S
v
e
lt
e

<
m
a
i
n
>

-
-

-
ch
il
d

ch
il
d

-
-

C
re
at
e-
C
om

p
on
en
t

-
ch
il
d

<
f
o
r
m
>

at
tr
ib
u
te

-
-

-
-

-
-

<
i
n
p
u
t
>

-
-

at
tr
ib
u
te

-
-

-
-

<
s
e
l
e
c
t
>

at
tr
ib
u
te

-
-

-
-

-
-

<
t
e
x
t
a
r
e
a
>

-
-

-
-

-
-

-
<
b
u
t
t
o
n
>

-
-

-
-

-
-

-
P
os
t-
<
d
i
v
>

-
ch
il
d

ch
il
d

M
ed
ia
C
om

p
on
en
t-
<
d
i
v
>

ch
il
d

ch
il
d
&

at
tr
ib
u
te

<
i
m
g
>
/
<
p
i
c
t
u
r
e
>

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

C
ap
ti
on
-<
p
>

-
-

-
-

-
-

-
C
ap
ti
on
-<
s
p
a
n
>

-
-

-
-

-
-

-

-
(n
ot

u
p
d
at
ed
)

8
7

7
7

7
8

8

at
tr
ib
u
te

2
0

2
0

0
0

0
te
x
t-
co
n
te
n
t

0
0

0
0

0
0

0
ad
d
ed

1
1

1
1

1
1

1

T
o
ta
l
C
h
a
n
g
e
s

3
1

3
1

1
1

1

Table 12: List of recorded mutations during media selection (empty cells indicate
that an element is not present, �-� indicates no mutations)

80

H
T
M
L
e
le
m
e
n
t

A
n
g
u
la
r

A
st
ro

N
e
x
t.
js

N
u
x
t

R
e
a
ct

V
u
e
.j
s

S
v
e
lt
e

<
m
a
i
n
>

-
-

-
ch
il
d

ch
il
d

-
-

C
re
at
e-
C
om

p
on
en
t

-
ch
il
d

<
f
o
r
m
>

at
tr
ib
u
te

-
-

-
-

-
-

<
i
n
p
u
t
>

at
tr
ib
u
te

at
tr
ib
u
te

at
tr
ib
u
te

-
at
tr
ib
u
te

-
-

<
s
e
l
e
c
t
>

-
-

-
-

-
-

-
<
t
e
x
t
a
r
e
a
>

-
-

-
-

-
-

-
<
b
u
t
t
o
n
>

-
-

-
-

-
-

-
P
os
t-
<
d
i
v
>

-
ch
il
d

ch
il
d

M
ed
ia
C
om

p
on
en
t-
<
d
i
v
>

ch
il
d

ch
il
d
&

at
tr
ib
u
te

<
i
m
g
>
/
<
p
i
c
t
u
r
e
>

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

C
ap
ti
on
-<
p
>

-
-

-
-

-
-

-
C
ap
ti
on
-<
s
p
a
n
>

-
-

-
-

-
-

-

-
(n
ot

u
p
d
at
ed
)

8
7

7
7

6
8

8

at
tr
ib
u
te

2
1

2
0

1
0

0
te
x
t-
co
n
te
n
t

0
0

0
0

0
0

0
ad
d
ed

1
1

1
1

1
1

1

T
o
ta
l
C
h
a
n
g
e
s

3
2

3
1

2
1

1

Table 13: List of recorded mutations during media source insertion (empty cells
indicate that an element is not present, �-� indicates no mutations)

81

H
T
M
L
e
le
m
e
n
t

A
n
g
u
la
r

A
st
ro

N
e
x
t.
js

N
u
x
t

R
e
a
ct

V
u
e
.j
s

S
v
e
lt
e

<
m
a
i
n
>

-
-

-
ch
il
d

ch
il
d

-
-

C
re
at
e-
C
om

p
on
en
t

-
ch
il
d

<
f
o
r
m
>

at
tr
ib
u
te

-
-

-
-

-
-

<
i
n
p
u
t
>

-
-

at
tr
ib
u
te

-
-

-
-

<
s
e
l
e
c
t
>

at
tr
ib
u
te

-
-

-
-

-
-

<
t
e
x
t
a
r
e
a
>

-
te
x
t-
co
n
te
n
t

te
x
t-
co
n
te
n
t

-
te
x
t-
co
n
te
n
t

-
-

<
b
u
t
t
o
n
>

at
tr
ib
u
te

at
tr
ib
u
te

at
tr
ib
u
te

at
tr
ib
u
te

at
tr
ib
u
te

at
tr
ib
u
te

at
tr
ib
u
te

P
os
t-
<
d
i
v
>

-
ch
il
d

ch
il
d

M
ed
ia
C
om

p
on
en
t-
<
d
i
v
>

ch
il
d

ch
il
d
&

at
tr
ib
u
te

<
i
m
g
>
/
<
p
i
c
t
u
r
e
>

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

C
ap
ti
on
-<
p
>

ch
il
d

ch
il
d

ch
il
d

ch
il
d

ch
il
d

ch
il
d

ch
il
d

C
ap
ti
on
-<
s
p
a
n
>

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

ad
d
ed

-
(n
ot

u
p
d
at
ed
)

5
4

3
4

3
5

6

at
tr
ib
u
te

3
1

3
1

1
1

1
te
x
t-
co
n
te
n
t

0
1

1
0

1
0

0
ad
d
ed

2
2

2
2

2
2

2

T
o
ta
l
C
h
a
n
g
e
s

5
4

6
3

4
3

3

Table 14: List of recorded mutations during post creation (empty cells indicate that
an element is not present, �-� indicates no mutations)

82

	Introduction
	Related Work
	Setup of the application and test environment
	Example Web Application
	Choice of web frameworks
	Hosting Environments
	Vercel
	Localhost

	Performance Metrics
	Page Load Times
	Component Load Times
	Component Update Times

	Testing Tools

	Implementation of the study
	Component implementation
	About Page
	Create Page
	MediaComponent

	Configuration of testing tools
	Lighthouse
	Playwright

	Evaluation
	Page Load Times
	Component Load Times
	Component Update Times

	Summary
	Concluding remarks
	Acknowledgements
	Listings
	List of Figures
	Acronyms
	References
	List of Tables

