
Mega-fast or just super-fast? Performance di�erences of
mainstream JavaScript frameworks for web applications

Andreas Nicklaus
Hochschule der Medien Stuttgart
Matrikelnummer: 44835

Prüfer: Prof. Dr. Fridtjof Toenniessen & Stephan Soller

Abstract

Part of every web application project is the choice of tooling, especially the choice

of framework for the development team. Unfortunately, this discussion has evolved

into a sentiment matter rather than a factual one. This thesis presents a study

of a single examplary web application created identically with seven mainstream

JavaScript web development frameworks: Angular, Astro, Next.js, Nuxt, React,

Svelte and Vue.js. A testing suite is proposed using Lighthouse and Playwright to

cover the classic page load, the load of JavaScript components and the update of

JavaScript components. The evaluation of the measurements include the usage of

two new derivative metrics: the Observed Visual Change Duration (OVCD) and a

loadEventEnd metric balanced towards the requestStart event of NavigationTiming

measurements. The results show no clear-cut overall advantage of one single devel-

opment framework, but outline strengths and weaknesses of all tested frameworks.

Component update times indicate Nuxt as the fastest and Next.js as the slowest

framework for update times. Similarly, Google Chrome appears to be the fastest

and Desktop Safari the slowest browsers for updating the DOM after user input.

1 Introduction

Throughout the evolution of the world wide web, development of websites reached a higher
complexity, both of the page content and the functionality. This complexity resulted in
higher demand for technical sophistication in networking, hosting services and develop-
ment tools. Although modern frameworks provide technical advancements to increase the
speed of page and content generation and arguably a better developer experience, there
is no apparant way to objectively determine a �best framework� in terms of developer
experience.

When it comes to user experience and perceived performance however, there are plen-
tiful collections of metrics and criteria to choose from so as to determine the performance
of websites, not frameworks. The optimization of websites has become a goal during de-
velopment because it has a real e�ect on Search Engine Optimization and user behaviour.

1



Both e�ects create business interests and �nancial incentives to invest resources into per-
formance optimization (Li et al., 2010; Zhou et al., 2013). Past research and existing tools
as well as guides give direction to optimize websites according to stakeholders' and users'
expectations and in most cases only focus on speci�c websites or speci�c frameworks or
give general advice.

However, the lack of research on the e�ect of the framework on website performance
indicates a need for research on the topic. Relying on marketing material for the choice
of framework is questionable because most modern frameworks claim to be fast, easy to
use and performance e�cient. This suggests that each would be a great choice. Com-
paring frameworks presents a challenge because no ideal set of metrics for this use case
is apparant and there are no publicy available replicas of web applications built with
di�ent frameworks. Therefore, a comparative study between versions of the same website
built with di�erent web development frameworks is needed. With this data, an informed
choice might be made for projects in the future. The goals of this thesis are to propose
a set of metrics that allow comparing mainstream JavaScript (JS) frameworks for web
applications, to provide a comparative study between selected frameworks and to create
a tool to compare the rendering performance a web page as a whole and of dynamic
components within a page.

2 Setup of the application and testing environment

One of the choices for the setup of the study is which frameworks to implement the
application in and compare. The selected frameworks have to support the designed
web application without the help of another tool or framework unless intended by the
developers of the framework. Plus, the frameworks have to use JavaScript (JS) in order
to narrow down the scope the study. TypeScript frameworks are allowed because they
support JS (Bierman et al., 2014).

Basis for the framework selection are the rankings of most-used, most-liked and most-
interesting web development frameworks and tools (Devographics, 2024). The following
frameworks were selected for this framework:

� Angular

� Astro

� Next.js

� Nuxt

� React

� Svelte

� Vue.js

In addition, Preact, Solid and Qwik were considered to be included in this study, but
were dropped because of relatively negative sentiment or low usage among developers
that have experience with the tools.

The web application used for this study is designed to be the subject of comparisons
between frameworks. Its look is derived from the Android app of Instagram (Instagram
from Meta, 2024) and it has four pages (see �gure 1). The four pages cover three generally
valid page types identi�ed in the design process. The About page is a �Static page� as it
does not change its content after the initial response from the web server. No additional
data query is needed to build the �nished DOM structure. The Feed page and the
Pro�le page are �Delayed pages�. Their de�ning characteristic is that the DOM cannot
be fully built from the initial HTML document, but need data queries to complete before
all content can be displayed. These data queries are triggered immediately after the
initial page request. The Create page is the only �Dynamic page�. Its initial features

2



indicate it being either a static or delayed page, depending on the implementation, and
it has dynamic components that update through user input. Mutations to the DOM are
therefore not only triggered by the initial page request but a user interaction. The time
of such mutations is therefore not predictable.

(a) Feed page (b) Pro�le page (c) Create page (d) About page

Figure 1: Screenshots of the �NotInstagram� application's pages

These four pages are comprised of 15 components, most of which are wrappers to
encapsulate image components, styled text or iterations over lists with subcomponents.
However, two components stand out because of their special purpose and implementation
di�erences between frameworks.

1. The MediaComponent is designed to present both internal and external image and
video sources in a single component. It is used to display Pro�le images and Post
content. Its main purpose is to decide - based on the passed source string - how to
project the multimedia �le onto the DOM. As such, a decision for enhanced image
or video elements had to be made per framework during the implementation of
the application. Svelte, Astro, Next.js and Nuxt provide such an enhanced image
component. In contrast, video elements are inserted to the DOM as-is, but the
browser behaviour is adapted identically for all frameworks using attributes on the
<video> element and JavaScript. In addition, the import of local images di�ers
between frameworks because the load behaviour di�ers. As such, some frameworks
require importing all local images in order to select the requested image.

2. The Create page poses a challenge to Astro because it does not natively support
dynamic components. The intended solution is to implement so-called �Islands�
using another framework. React is chosen for its high usage rate among web devel-
opers (Devographics, 2024). As a result, two implementations are compared in this
study: Using the React components that are needed for Astro Islands everywhere,
even if the component in question is not dynamic, and creating duplicate Astro
components for when a component is not required to be dynamic. One additional

3



React component �CreateForm� was created in order to encapsulate React subcom-
ponents and six components were implemented in React because they are part of
the form and the Post preview on the Create page.

In order to test the end-products of the frameworks, at least one web server is needed
to host the application. Previous work suggest that network delay is a great part of
render delay and performance issues (Grigorik, 2013). For this reason, the tests for this
study are performed on two di�erent web servers: An online hosting service and the local
testing machine.

1. Vercel was chosen for hosting the applications on distant servers based on its
popularity, capabilities for Server-side Rendering (SSR), support for both a free
and paid version and its simple integration into CI/CD pipelines. Each Vercel
project was connected to a Github repository, one per framework. Only required
project con�guration options were changed per project on the plattform to ensure
its state as �as-is�.

2. A local host was chosen to minimize the e�ect of network delay and related delays,
e.g. domain name resolving, in this study. The application is hosted on the testing
machine. A HP Envy x360 with an AMD Ryzen 5 5500U processor and 16 GB RAM
is used here. The OS on the device is Windows 11 Home (Version 10.0.22631) during
testing. The application is built before every test and hosted using either built-in
commands for the framework or using the serve command (see table 1)

Framework Build Command Host Command
Angular ng build serve

Astro astro build astro preview

Next.js next build next start

Nuxt nuxt build nuxt preview

nuxt generate nuxt preview

React react-scripts build serve

Svelte vite build vite preview

Vue.js vite build serve

Table 1: Build and host command for each used framework as used for testing the appli-
cations when hosted locally

To identify weaknesses of the frameworks and to simplify the evaluation of the results,
eleven metrics were chosen to test the frameworks in three categories (see table 2). The
page load covers the classic load time of web pages and is speci�ed to outline the load
speed from requestStart to the last change to the page. The Component Load is
de�ned as the time frame in which any changes to the DOM with JS can be identi�ed
and the rendering process of JS components are shown. The Component Update Time
is de�ned as the time between a user interaction and a DOM mutation. This time frame
describes the speed of feedback to the user that the interaction has been registered and
something is happening as well as the speed until that something �nishes happening.
Especially DOM mutation times are expected to show di�erences inbetween frameworks

4



Page Component
Load Time Load Time Update Time

Total Byte Weight Observed Last Visual Change
Time To First Byte Observed First Visual Change

Time To Interactive
Total Blocking Time

LoadEventEnd
DomContentLoaded DOM Mutation Times
Last Visual Change
Largest Contentful Paint

Table 2: Assignment of metrics to the metric categories

and implementations as the HTML elements and internal implementation change from
one framework to another.

The requirements for testing tools - created by hosting the application on two di�erent
web servers and by the list list of metrics - are ful�lled by the Lighthouse CLI and
Playwright. Both are required to output their results in human-readable and machine-
readable format to support easy debugging and the creation of aggregate metrics.

1. Using the Lighthouse CLI, a script for starting the web server and running Light-
house tests on the web application is executed. These tests run 20 times and only
cover the performance measurements of Lighthouse. Reports are created in both
HTML and JSON format in order to debug the tests and create the mean average
of every measurement.

2. Tests with Playwright focus on the measurement of DOM mutations and the ad-
herence to time budgets. To that end, a JS script is injected into the browser
context before tests. This recording script initializes a MutationObserver on a spe-
ci�c HTML element that is created by the framework. This way, all DOMmutations
such as element addition, element removal and attribute change are recorded with
an identi�er of the element and the time of the mutation.

Which metric is measured by which tool can be seen in table 3.

Lighthouse Playwright
Total Byte Weight (TBW) domContentLoaded
Time To First Byte (TTFB) loadEventEnd
Time To Interactive (TTI) User Input Times
Total Blocking Time (TBT) Mutation Times
Largest Contentful Paint (LCP)
First Visual Change (FVC)
Observed First Visual Change (OFVC)
Observed Last Visual Change (OLVC)

Table 3: Assignment of metrics to the test tools

5



3 Test results

Metrics for the page load and for the component load times show no clear generally
applicable evidence for a single framework being faster than the others. Such a distinction
can only be made on a per-metric basis. Figure 2 presents the averages of measurements
from the Lighthouse reports per page and framework.

Next.js, Astro and Svelte are the leading frameworks in TBW and Svelte, Next.js,
Vue.js and especially Astro have fast results in their TTI. In addition, Astro, Angular,
Svelte, Nuxt and Vue.js stand out through little �uctuations in TTI across the four pages
and the test repetitions. The results of measurements for the TBT also favor Astro
and Svelte. In contrast, Astro and Svelte perform poorly in DomContentLoaded and
balanced LoadEventEnd (see �gure 3a). These metrics are strengths of Vue.js, React and
Nuxt. The balanced LoadEventEnd is balanced towards the requestStart (see equation
1). Vue.js and React are also the fastest frameworks in OLVC. The TTFB does not
support a ranking of frameworks. Instead, it is more dependent on the page content and
the host, which in�uence the results more than the framework. However, Astro, Next.js
and Angular stand out through slow results in this metric. The balanced LoadEventEnd
hightlights Vue.js and React positively, but also demonstrates a high dependency on the
browser.

loadEventEnd balanced = loadEventEnd raw − requestStart (1)

The metrics for the component load time have similar characteristics. The OFVC
of the applications are early in Astro, React and Next.js, which indicates a strength of
React-based frameworks. React, Vue.js and Angular also naturally have a short Observed
Visual Change Duration (OVCD) (see �gure 3b), which is unsurprising. The OVCD is
de�ned as the time di�erence between OFVC and OLVC (see equation 2). The recordings
of early DOM mutations are also very fast for Astro, Vue.js and React, whereas recordings
are missing completely for Angular (see �gure 3c). This is most likely due to a faulty
initialization of the MutationObserver that is responsible for recording mutation times.

observedVisualChangeDuration =

observedLastVisualChange − observedFirstVisualChange (2)

In contrast, the measurements made for the component update times suggest clear
rankings of the frameworks and of the used browsers (see �gure 3d and table 4). The
times of the DOM mutations are quite similar to each other except in Mobile Safari
and Desktop Safari. In these browsers, Next.js is the slowest and Nuxt is the fastest
framework. Across all pages and frameworks, the ranking of browsers from fastest to
slowest is Google Chrome, Microsoft Edge, Chromium, Mobile Chrome, Firefox, Mobile
Safari and Desktop Safari. This means that time budgets are easiest to keep to in Google
Chrome and that testing in Desktop Safari is more challenging for the test subject.
The ranking of frameworks is - from fastest to slowest - Nuxt, Angular, Vue.js, React,
Astro/Svelte and Next.js. In addition, Nuxt, Vue.js and Svelte are economical with
DOM mutations after user interaction, whereas the other frameworks update the DOM
after user interaction in more di�erent ways. This ranking can in�uence the choice of
framework for user input heavy applications. For this kind of application, Nuxt, Angular,

6



(a) Total Byte Weight (TBW) (b) Time To First Byte (TTFB)

(c) Time To Interactive (TTI) (d) Observed DomContentLoaded

(e) Total Blocking Time (TBT) (f) Largest Contentful Paint (LCP)

(g) Observed Last Visual Change (OLVC) (h) Observed Last Visual Change (OLVC)

Figure 2: Lighthouse test results in Google Chrome

Vue.js and React present themselves as the best choices relating to component update
times.

7



(a) Balanced loadEventEnd timings (b) Observed Visual Change Duration (OVCD)

(c) Component load mutation times

(d) Recorded DOM mutation timings after user

actions

Figure 3

4 Summary

The results of the study are inconclusive for the metrics in relation to page and component
load time. The measurements only show general advantages of single frameworks over
others for the component update time. Nuxt is the fastest framework in regards to
component update time, whereas Next.js is the slowest. In kind, Google Chrome turns
out to be the fastest browser for component updates and these updates are slowest in
Desktop Safari.

Due to these �uctuating results, future work should focus on making these results
more reliable. Reliability might be achieved through repetition of the study with more
test repetitions and the inclusion of other hosting environments. Additional pages might
outline dependencies of the performance on the type of web page. Continuations of this
study could also expand the mocked user actions to other interactions than �lling a form.
A preferred expansion of the user actions includes navigation between pages.

Solutions to problems within this study should lead to a better initialization algorithm
and end of recording DOM mutations. Currently, some mutations are not recorded at all
and the end time of recording is arbitrarily set. For this reason, early mutations, pur-
posefully continuously mutating components and very late mutations cannot be recorded
properly.

8



Angular Astro Next.js Nuxt React Svelte Vue.js Average

44 51 47 39 44 38 51 44,857

68,9 71,75 75,41 66,4 57,87 73,65 77,18 70,166Chromium

95 89 108 94 85 95 104 95,714

54 63 59 59 54 60 52 57,286

88,7 99,34 142,18 82,78 83,72 93,67 82,24 96,090Firefox

123 142 235 108 181 129 103 145,857

77 87 79 51 84 70 47 70,714

122,7 170,1 303,54 86,02 169 164,23 135,72 164,473Desktop Safari

172 270 493 124 280 283 200 260,286

44 49 47 42 44 45 46 45,286

66,84 68,96 93,7 61,14 67,41 80,81 69,04 72,557Mobile Chrome

90 85 143 82 82 116 89 98,143

52 78 73 47 67 56 52 60,714

105,61 154,28 196,39 110,32 125,67 126,19 133,03 135,927Mobile Safari

152 254 372 167 183 208 206 220,286

43 44 46 37 41 40 40 41,571

70,38 64,25 72,77 60,88 62,13 74,46 60,9 66,539Microsoft Edge

90 80 134 85 75 102 79 93,143

41 43 41 34 40 39 37 39,286

62 57,49 68,75 59,92 59,48 64,24 61,1 61,854Google Chrome

84 72 99 77 77 89 77 82,143

50,714 59,286 56 44,143 53,429 49,714 46,429

83,59 98,024 136,106 75,351 89,326 96,75 88,459Average

115,143 141,714 226,286 105,286 137,571 146 122,571

44,505 47,915 45,159 35,06 45 41,941 36,277

68,9 74,421 107,408 60,283 74,989 78,181 69,971Weighted average

94,179 103,895 167,077 80,285 109,784 118,195 93,482

Table 4: Minimum, average and maximum of recorded mutation times after user input
in milliseconds (fastest times are highlighted green, slowest red). Weights are based on
browser usage quota (StatCounter, 2024).

A Acronyms

CI/CD Continuous Integration and Continuous Delivery.

DOM Document Object Model.

FVC First Visual Change.

HTML Hypertext Markup Language.

JS JavaScript.

JSON JavaScript Object Notion.

LCP Largest Contentful Paint.

LVC Last Visual Change.

OFVC Observed First Visual Change.

OLVC Observed Last Visual Change.

OVCD Observed Visual Change Duration.

9



SEO Search Engine Optimization.

SSR Server-side Rendering.

TBT Total Blocking Time.

TBW Total Byte Weight.

TTFB Time To First Byte.

TTI Time To Interactive.

B References

Bierman, G., Abadi, M., and Torgersen, M. (2014). Understanding typescript. In
Jones, R., editor, ECOOP 2014 � Object-Oriented Programming, pages 257�281, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Devographics (2024). State of javascript 2023. https://2023.stateofjs.com/en-US/
libraries/front-end-frameworks/. accessed 07/29/2024.

Grigorik, I. (2013). High Performance Browser Networking. O'Reilly Media, Inc., 1005
Gravensetin Highwy North, Sebastopol, CA 95472.

Instagram from Meta (2024). Instagram. https://www.instagram.com/. accessed
08/02/2024.

Li, Z., Zhang, M., Zhu, Z., Chen, Y., Greenberg, A., and Wang, Y.-M. (2010).
Webprophet: automating performance prediction for web services. In Proceedings of the
7th USENIX Conference on Networked Systems Design and Implementation, NSDI'10,
page 10, USA. USENIX Association.

StatCounter (2024). Quick start. https://gs.statcounter.com/. accessed
07/18/2024.

Zhou, M., Giyane, M., and Nyasha, M. (2013). E�ects of web page contents on load
time over the internet. International Journal of Science and Research (IJSR), pages
2319�7064.

Github repository: All code and additional material can be found under https:
//github.com/andreasnicklaus/master.

10

https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://www.instagram.com/
https://gs.statcounter.com/
https://github.com/andreasnicklaus/master
https://github.com/andreasnicklaus/master

	Introduction
	Setup of the application and testing environment
	Test results
	Summary
	Acronyms
	References

