HOCHSCHULE
DER MEDIEN

Mega-fast or just super-fast? Performance differences of
mainstream JavaScript frameworks for web applications

Andreas Nicklaus
Hochschule der Medien Stuttgart
Matrikelnummer: 44835

Priifer: Prof. Dr. Fridtjof Toenniessen & Stephan Soller

Abstract

Part of every web application project is the choice of tooling, especially the choice
of framework for the development team. Unfortunately, this discussion has evolved
into a sentiment matter rather than a factual one. This thesis presents a study
of a single examplary web application created identically with seven mainstream
web development frameworks: Angular, Astro, Next.js, Nuxt, React,
Svelte and Vue.js. A testing suite is proposed using Lighthouse and Playwright to
cover the classic page load, the load of [JavaScript] components and the update of
components. The evaluation of the measurements include the usage of
two new derivative metrics: the [Observed Visual Change Duration (OVCD)|and a
loadEventEnd metric balanced towards the requestStart event of NavigationTiming
measurements. The results show no clear-cut overall advantage of one single devel-
opment framework, but outline strengths and weaknesses of all tested frameworks.
Component update times indicate Nuxt as the fastest and Next.js as the slowest
framework for update times. Similarly, Google Chrome appears to be the fastest
and Desktop Safari the slowest browsers for updating the after user input.

1 Introduction

Throughout the evolution of the world wide web, development of websites reached a higher
complexity, both of the page content and the functionality. This complexity resulted in
higher demand for technical sophistication in networking, hosting services and develop-
ment tools. Although modern frameworks provide technical advancements to increase the
speed of page and content generation and arguably a better developer experience, there
is no apparant way to objectively determine a “best framework” in terms of developer
experience.

When it comes to user experience and perceived performance however, there are plen-
tiful collections of metrics and criteria to choose from so as to determine the performance
of websites, not frameworks. The optimization of websites has become a goal during de-
velopment because it has a real effect on|[Search Engine Optimization|and user behaviour.

Both effects create business interests and financial incentives to invest resources into per-
formance optimization (Li et al., 2010; Zhou et al.l 2013)). Past research and existing tools
as well as guides give direction to optimize websites according to stakeholders’ and users’
expectations and in most cases only focus on specific websites or specific frameworks or
give general advice.

However, the lack of research on the effect of the framework on website performance
indicates a need for research on the topic. Relying on marketing material for the choice
of framework is questionable because most modern frameworks claim to be fast, easy to
use and performance efficient. This suggests that each would be a great choice. Com-
paring frameworks presents a challenge because no ideal set of metrics for this use case
is apparant and there are no publicy available replicas of web applications built with
diffent frameworks. Therefore, a comparative study between versions of the same website
built with different web development frameworks is needed. With this data, an informed
choice might be made for projects in the future. The goals of this thesis are to propose
a set of metrics that allow comparing mainstream |[JavaScript (JS)| frameworks for web
applications, to provide a comparative study between selected frameworks and to create
a tool to compare the rendering performance a web page as a whole and of dynamic
components within a page.

2 Setup of the application and testing environment

One of the choices for the setup of the study is which frameworks to implement the
application in and compare. The selected frameworks have to support the designed
web application without the help of another tool or framework unless intended by the
developers of the framework. Plus, the frameworks have to use [JavaScript (JS)|in order
to narrow down the scope the study. TypeScript frameworks are allowed because they
support [JS| (Bierman et al.l [2014)).

Basis for the framework selection are the rankings of most-used, most-liked and most-
interesting web development frameworks and tools (Devographics, 2024)). The following
frameworks were selected for this framework:

e Angular e Next.js e React e Vue.js

e Astro o Nuxt e Svelte

In addition, Preact, Solid and Qwik were considered to be included in this study, but
were dropped because of relatively negative sentiment or low usage among developers
that have experience with the tools.

The web application used for this study is designed to be the subject of comparisons
between frameworks. Its look is derived from the Android app of Instagram (Instagram
from Meta, [2024) and it has four pages (see figure|1)). The four pages cover three generally
valid page types identified in the design process. The About page is a “Static page” as it
does not change its content after the initial response from the web server. No additional
data query is needed to build the finished structure. The Feed page and the
Profile page are “Delayed pages”. Their defining characteristic is that the cannot
be fully built from the initial document, but need data queries to complete before
all content can be displayed. These data queries are triggered immediately after the
initial page request. The Create page is the only “Dynamic page”. Its initial features

indicate it being either a static or delayed page, depending on the implementation, and
it has dynamic components that update through user input. Mutations to the DOM] are
therefore not only triggered by the initial page request but a user interaction. The time
of such mutations is therefore not predictable.

Notlnstagram +UO Notlnstagram X Notlnstagram X

_ R e Peter Poster Thisis
=\ 5 @PeterPoster
& Notlnstagram

Your Profile Peter Poster ~ Tina Traveller Lars Local Father, Athlete, Influencer in that order

Marketing Manager @HdM
her #athlete #in
o Peter Poster emiete N

#at hi fluencer
=== }r m
— created by
., o Peter Poster Andreas Nicklaus
Y
! \) @ @andreasnicklaus

@andreasnicklaus
wd q an067@hdm-stuttgart.de
=
S S - Nothing to see yet...
Chq i linue!
° o - S
196 likes
If you read this, you are great! Have a fantastic time
doing whatever it is that comes to your mind!
#ootd #foodie #Ineverthoughtthisdaywouldcome
What is this?
This project is part of the master thesis with the
~ Olikes e
Tina Traveller Nothing to see yet... e
::::: Insert a #caption to continue!
(a) Feed page (b) Profile page (c) Create page (d) About page

Figure 1: Screenshots of the “NotInstagram” application’s pages

These four pages are comprised of 15 components, most of which are wrappers to
encapsulate image components, styled text or iterations over lists with subcomponents.
However, two components stand out because of their special purpose and implementation
differences between frameworks.

1. The MediaComponent is designed to present both internal and external image and
video sources in a single component. It is used to display Profile images and Post
content. Its main purpose is to decide - based on the passed source string - how to
project the multimedia file onto the DOM] As such, a decision for enhanced image
or video elements had to be made per framework during the implementation of
the application. Svelte, Astro, Next.js and Nuxt provide such an enhanced image
component. In contrast, video elements are inserted to the [DOM] as-is, but the
browser behaviour is adapted identically for all frameworks using attributes on the
<video> element and [JavaScript] In addition, the import of local images differs
between frameworks because the load behaviour differs. As such, some frameworks
require importing all local images in order to select the requested image.

2. The Create page poses a challenge to Astro because it does not natively support
dynamic components. The intended solution is to implement so-called “Islands”
using another framework. React is chosen for its high usage rate among web devel-
opers (Devographics, 2024). As a result, two implementations are compared in this
study: Using the React components that are needed for Astro Islands everywhere,
even if the component in question is not dynamic, and creating duplicate Astro
components for when a component is not required to be dynamic. One additional

React component “CreateForm” was created in order to encapsulate React subcom-
ponents and six components were implemented in React because they are part of
the form and the Post preview on the Create page.

In order to test the end-products of the frameworks, at least one web server is needed
to host the application. Previous work suggest that network delay is a great part of
render delay and performance issues (Grigorik, 2013). For this reason, the tests for this
study are performed on two different web servers: An online hosting service and the local
testing machine.

1. Vercel was chosen for hosting the applications on distant servers based on its
popularity, capabilities for [Server-side Rendering (SSR), support for both a free
and paid version and its simple integration into pipelines. Each Vercel
project was connected to a Github repository, one per framework. Only required
project configuration options were changed per project on the plattform to ensure
its state as “as-is”.

2. A local host was chosen to minimize the effect of network delay and related delays,
e.g. domain name resolving, in this study. The application is hosted on the testing
machine. A HP Envy x360 with an AMD Ryzen 5 5500U processor and 16 GB RAM
is used here. The OS on the device is Windows 11 Home (Version 10.0.22631) during
testing. The application is built before every test and hosted using either built-in
commands for the framework or using the serve command (see table

Framework | Build Command Host Command

Angular ng build serve

Astro astro build astro preview

Next.js next build next start

Nuxt nuxt build nuxt preview
nuxt generate nuxt preview

React react-scripts build | serve

Svelte vite build vite preview

Vue.js vite build serve

Table 1: Build and host command for each used framework as used for testing the appli-
cations when hosted locally

To identify weaknesses of the frameworks and to simplify the evaluation of the results,
eleven metrics were chosen to test the frameworks in three categories (see table [2). The
page load covers the classic load time of web pages and is specified to outline the load
speed from requestStart to the last change to the page. The Component Load is
defined as the time frame in which any changes to the with [J5| can be identified
and the rendering process of [J5| components are shown. The Component Update Time
is defined as the time between a user interaction and a mutation. This time frame
describes the speed of feedback to the user that the interaction has been registered and
something is happening as well as the speed until that something finishes happening.
Especially DOM] mutation times are expected to show differences inbetween frameworks

Page Component

Load Time Load Time Update Time
Total Byte Weight] Observed Last Visual Change|
Time To First Bytel Observed First Visual Change|

[Time To Interactive]
|T0tal Blocking Time|
LoadEventEnd
DomContentLoaded DOM Mutation Times
Last Visual Change|
Largest Contentful Paint|

Table 2: Assignment of metrics to the metric categories

and implementations as the [HI'ML| elements and internal implementation change from
one framework to another.

The requirements for testing tools - created by hosting the application on two different
web servers and by the list list of metrics - are fulfilled by the Lighthouse CLI and
Playwright. Both are required to output their results in human-readable and machine-
readable format to support easy debugging and the creation of aggregate metrics.

1. Using the Lighthouse CLI, a script for starting the web server and running Light-
house tests on the web application is executed. These tests run 20 times and only
cover the performance measurements of Lighthouse. Reports are created in both
[HTMTI)] and [JSON] format in order to debug the tests and create the mean average

of every measurement.

2. Tests with Playwright focus on the measurement of mutations and the ad-
herence to time budgets. To that end, a script is injected into the browser
context before tests. This recording script initializes a MutationObserver on a spe-
cific[HTML]element that is created by the framework. This way, all[DOM]mutations
such as element addition, element removal and attribute change are recorded with
an identifier of the element and the time of the mutation.

Which metric is measured by which tool can be seen in table

Lighthouse Playwright

Total Byte Weight (TBW)) domContentLoaded
Time To First Byte (TTFB)| loadEventEnd
Time To Interactive (TTI)| User Input Times
Total Blocking Time (TBT)| Mutation Times

Largest Contentful Paint (LCP)|

First Visual Change (FVC)|

Observed First Visual Change (OFVC)|
Observed Last Visual Change (OLVC)|

Table 3: Assignment of metrics to the test tools

3 Test results

Metrics for the page load and for the component load times show no clear generally
applicable evidence for a single framework being faster than the others. Such a distinction
can only be made on a per-metric basis. Figure [2] presents the averages of measurements
from the Lighthouse reports per page and framework.

Next.js, Astro and Svelte are the leading frameworks in [TBW] and Svelte, Next.js,
Vue.js and especially Astro have fast results in their In addition, Astro, Angular,
Svelte, Nuxt and Vue.js stand out through little fluctuations in[T'T]| across the four pages
and the test repetitions. The results of measurements for the [TBT]| also favor Astro
and Svelte. In contrast, Astro and Svelte perform poorly in DomContentLoaded and
balanced LoadEventEnd (see figure . These metrics are strengths of Vue.js, React and
Nuxt. The balanced LoadEventEnd is balanced towards the requestStart (see equation
. Vue.js and React are also the fastest frameworks in The does not
support a ranking of frameworks. Instead, it is more dependent on the page content and
the host, which influence the results more than the framework. However, Astro, Next.js
and Angular stand out through slow results in this metric. The balanced LoadEventEnd
hightlights Vue.js and React positively, but also demonstrates a high dependency on the
browser.

loadEventEnd pianced = loadEventEnd 4., — requestStart (1)

The metrics for the component load time have similar characteristics. The
of the applications are early in Astro, React and Next.js, which indicates a strength of
React-based frameworks. React, Vue.js and Angular also naturally have a short
[Visual Change Duration (OVCD)| (see figure [3b), which is unsurprising. The is
defined as the time difference between [OFVC|and [OLVC| (see equation [2). The recordings
of early[DOM|mutations are also very fast for Astro, Vue.js and React, whereas recordings
are missing completely for Angular (see figure . This is most likely due to a faulty
initialization of the MutationObserver that is responsible for recording mutation times.

observed VisualChange Duration =

observedLastVisualChange — observedFirst VisualChange (2)

In contrast, the measurements made for the component update times suggest clear
rankings of the frameworks and of the used browsers (see figure and table . The
times of the mutations are quite similar to each other except in Mobile Safari
and Desktop Safari. In these browsers, Next.js is the slowest and Nuxt is the fastest
framework. Across all pages and frameworks, the ranking of browsers from fastest to
slowest is Google Chrome, Microsoft Edge, Chromium, Mobile Chrome, Firefox, Mobile
Safari and Desktop Safari. This means that time budgets are easiest to keep to in Google
Chrome and that testing in Desktop Safari is more challenging for the test subject.
The ranking of frameworks is - from fastest to slowest - Nuxt, Angular, Vue.js, React,
Astro/Svelte and Next.js. In addition, Nuxt, Vue.js and Svelte are economical with
mutations after user interaction, whereas the other frameworks update the
after user interaction in more different ways. This ranking can influence the choice of
framework for user input heavy applications. For this kind of application, Nuxt, Angular,

totalbyteweight
NN Angular on Vercel AN Astro on Vercel § Nextjs on Vercel IS React on Vercel N Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel KN Svelte on Vercel SN Vue.js on Verce! [l Angular [l Astro (mixed)
W Astro (duplicate) I Nextjs I Nuxt (build) Il Nuxt (generate) Il React Il Svelte Il Vuejs

14.000-000
12000000 & N
P
10.000.000 . gl “ .
, 8.000.000 i H\~ iﬂ \
i Wy N \
2 6000000 !i H\EH .H \
RN Y -
4.000.000 .\ H\.‘ .H l‘ -
NN N R
2000000 NNNAANN \ N AW
s i IR
0 I!! !\!! RN | gy | SPRRES |\ WS AN |
Feed About Create Profile

Page

a) [Total Byte Weight (TBW)|

interactive
NN Angular on Vercel SN Astro on Vercel N Nextjs on Vercel S React on Vercel N Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel KN Svelte on Vercel SN Vue.js on Verce! [l Angular [l Astro (mixed)
B Astro (duplicate) I Nextjs I Nuxt (build) Il Nuxt (generate) Il React Il Svelte I Vuejs

6.000
5.000
4.000
£ 3.000
N
2000 o N
l H i‘ N N N N i
W N N MW
1000 NNANNN \‘\1 ! Ny NN
SR I A I Y III AN
: WA s W II SN N N

Create

) [Time To Interactive (TTI)|

totalBlockingTime
NN Angular on Vercel SN Astro on Vercel N Nextjs on Vercel React on Vercel N Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel RN Svelte on Vercel [N Vue.js on Vercel Illl Angular Il Astro (mixed)
B Astro (duplicate) Il Nextjs Il Nuxt (build) Il Nuxt (generate) React [l Svelte [Vue js

350

300

250

200

150

100

50

s
222
o

222

Ns - |] N
Create

0
Profile

e) [Total Blocking Time (TBT)|

observedLastVisualChange

NN Angular on Vercel SN Astro on Vercel § Nextjs on Vercel React on Vercel 8 Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel R Svelte on Vercel [N Vue.js on Vercel Ill Angular Il Astro (mixed)

M Astro (duplicate) Il Nextjs Il Nuxt (build) Il Nuxt (generate) React [l Svelte Il Vue js
7.000

6.000
5.000

4.000

2.000
1.000

N
i
\
\
= 3000 H
\
\
\
\
NN

N
IIII st SANGIILL

Feed About Create

ol s

AN

NN
RN
N
Liome MO
NS NN
o

rofile
Page

) [Observed Last Visual Change (OLVC)|

ms

ms

ms

timeToFirstByte
NN Angular on Vercel BN Astro on Vercel NN Nextjs on Vercel S8 React on Vercel N Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel NN Svelte on Vercel SN Vuejs on Verce! [lll Angular Il Astro (mixed)
I Astro (duplicate) [Nextjs I Nuxt (build) I Nuxt (generate) [l React Il Svelte Il Vuejs

1.200
N
1.000 .
w0 N s i
lnﬁ i \ N H N E\
600 NN NN NN NN
Dy B B R
RN NN W
R PR N Y
200 'i. i‘ii '\. AW \ *i‘ N\ ‘“‘
WY AW AW N
. AW R AR AN
Feed About Create Profile

Page

b) [Time To First Byte (TTFB)|

observedDomContentLoaded
NN Angular on Vercel SN Astro on Vercel NN Nextjs on Vercel S8 React on Vercel N Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel NN Svelte on Vercel SN Vuejs on Verce! [lll Angular Il Astro (mixed)
I Astro (duplicate) [Nextjs I Nuxt (build) Il Nuxt (generate) Il React Il Svelte Il Vuejs

900
800 i
700 E
600 N \ \
500 H i = H

N \ \
o 8 \ Ay
- W i I M
o SNILL Ll R Rl
SR NI (] Y T T Y I Y]

Feed About Create Profile

Page

(d) Observed DomContentLoaded

largestContentfulPaint

NN Angular on Vercel BN Astro on Vercel E Nextjs on Vercel React on Vercel 8 Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel KR Svelte on Vercel SN Vue js on Vercel JIll Angular [l Astro (mixed)
I Astro (duplicate) [Nl Nextjs I Nuxt (build) Il Nuxt (generate) React Il Svelte Il Vue js

8.000
E |“ “
\
N
il
Nl

f) [Largest Contentful Paint (LCP)|

observedFirstVisualChange

7.000

6.000

5.000

4.000

3.000

2.000

1.000

“%m
W

Profile

7777
Yo7 774

Create

N
s||||‘| |

About

2774

\
N
\

1727 7]

N
\

0

Page

N Angular on Vercel BN Astro on Vercel BN Nextjs on Vercel React on Vercel N Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel RN Svelte on Vercel SN Vue js on Vercel Ill Angular [l Astro (mixed)
I Astro (duplicate) [l Nextjs [l Nuxt (build) Il Nuxt (generate) React Il Svelte Il Vue js

700
N
600
500 i E E
\ \
400 . N x \
f i \
w Nad o \ NS .
N N N
N & N N W A My
200
A INTRET R
o NN SNl Bt BNtk
AR [AR TR T I 71
Feed About Create Profile

Page

) [Observed Last Visual Change (OLVC)|

Figure 2: Lighthouse test results in Google Chrome

Vue.js and React present themselves as the best choices relating to component update

times.

loadEventEnd (palanced) observedVisualChangeDuration

Nuxt N Astro NN Vue s React NI Angular NN Svelic N Nexts N Angular on Vercel SN Astro on Vercel Next.js on Vercel React on Vercel N Nuxt (build) on Vercel
1400 ms - SN Nuxt (generate) on Vercel NN Svelte on Vercel SN Vue.js on Verce! [ll Angular [l Astro (mixed)
I Astro (duplicate) Nextjs [l Nuxt (build) [l Nuxt (generate) React [l Svelte [l Vuejs
1200 ms 6.000
5 1000ms 5.000 E
H 800 ms :
4.000 .
S 600ms :i AN
. © . S £ 3.000 N i
400ms EH “ g\ii
[2.000 N .H “‘:
200ms : . . . ot .: Hi “Hi
o o o 8,0 o Y o o W\ AN
: : o r ¥ AL
e ot N
e e e e e o Ml o SONCIDIL NN
e o° h W - Feed About Create Profile
Browser Path
(a) Balanced loadEventEnd timings (b) [Observed Visual Change Duration (OVCD))
Framework Reaction Times
I Chromium [Mobile Chrome Google Chrome Microsoft Edge [l Firefox [Nl Mobile Safari
Component load mutation times M Deskiop Safari
Nuxt [Asto [Vuejs React [Angular [N Svelte [N Nextjs sooms .
2000 ms
1800ms . 500 ms .
_ 1600 ms. é 100 ms '
S 1400ms . E []
2 1200ms ° 2 s00ms
3 1000ms ° . . . A
% 800 ms. ' l i 200 ms : .. ° E
£ jzz " R ‘ ! D H " 100 ms o o, oob] —_— R P T
" v i seuegy oo Seay ™ (30 P LN
200ms L] L | ; o (I L $. ot " { L] L1} o8 "
oms Nuxt Astro Vuejs React Angular Svelte Nextjs
o e o o o S o wa" e v'u@“@u" " o o Framework
oe AP W o
Browser
(d) Recorded mutation timings after user
(¢) Component load mutation times actions

Figure 3

4 Summary

The results of the study are inconclusive for the metrics in relation to page and component
load time. The measurements only show general advantages of single frameworks over
others for the component update time. Nuxt is the fastest framework in regards to
component update time, whereas Next.js is the slowest. In kind, Google Chrome turns
out to be the fastest browser for component updates and these updates are slowest in
Desktop Safari.

Due to these fluctuating results, future work should focus on making these results
more reliable. Reliability might be achieved through repetition of the study with more
test repetitions and the inclusion of other hosting environments. Additional pages might
outline dependencies of the performance on the type of web page. Continuations of this
study could also expand the mocked user actions to other interactions than filling a form.
A preferred expansion of the user actions includes navigation between pages.

Solutions to problems within this study should lead to a better initialization algorithm
and end of recording [DOM] mutations. Currently, some mutations are not recorded at all
and the end time of recording is arbitrarily set. For this reason, early mutations, pur-
posefully continuously mutating components and very late mutations cannot be recorded

properly.

Angular | Astro | Next.js | Nuxt React | Svelte | Vue.js | Average
44 51 47 39 44 38 51 44,857
Chromium 68,9 71,75 75,41 66,4 57,87 73,65 77,18 70,166
95 89 108 94 85 95 104 95,714
54 63 59 59 54 60 52 57,286
Firefox 88,7 99,34 142,18 82,78 83,72 93,67 82,24 96,090
123 142 235 108 181 129 103 145,857
77 87 79 51 84 70 47 70,714
Desktop Safari 122,7 170,1 303,54 86,02 169 164,23 135,72 164,473
172 270 493 124 280 283 200 260,286
44 49 47 42 44 45 46 45,286
Mobile Chrome 66,84 68,96 93,7 61,14 67,41 80,81 69,04 72,557
90 85 143 82 82 116 89 98,143
52 78 73 47 67 56 52 60,714
Mobile Safari 105,61 154,28 196,39 110,32 125,67 | 126,19 133,03 135,927
152 254 372 167 183 208 206 220,286
43 44 46 37 41 40 40 41,571
Microsoft Edge 70,38 64,25 72,77 60,88 62,13 74,46 60,9 66,539
90 80 134 85 75 102 79 93,143
41 43 41 34 40 39 37 39,286
Google Chrome 62 57,49 68,75 59,92 59,48 64,24 61,1 61,854
84 72 99 7 7 89 7 82,143
50,714 59,286 56 44,143 | 53,429 | 49,714 | 46,429
Average 83,59 98,024 | 136,106 | 75,351 | 89,326 96,75 88,459
115,143 | 141,714 | 226,286 | 105,286 | 137,571 146 122,571
44,505 47,915 45,159 35,06 45 41,941 | 36,277
Weighted average 68,9 74,421 | 107,408 | 60,283 | 74,989 | 78,181 | 69,971
94,179 103,895 | 167,077 | 80,285 | 109,784 | 118,195 | 93,482

Table 4: Minimum, average and maximum of recorded mutation times after user input
in milliseconds (fastest times are highlighted green, slowest red). Weights are based on
browser usage quota (StatCounter, [2024)).

A Acronyms

CI/CD Continuous Integration and Continuous Delivery.

DOM Document Object Model.

FVC First Visual Change.

HTML Hypertext Markup Language.

JS JavaScript.

JSON JavaScript Object Notion.

LCP Largest Contentful Paint.

LVC Last Visual Change.

OFVC Observed First Visual Change.

OLVC Observed Last Visual Change.

OVCD Observed Visual Change Duration.

SEO Search Engine Optimization.
SSR Server-side Rendering.

TBT Total Blocking Time.
TBW Total Byte Weight.

TTFB Time To First Byte.

TTI Time To Interactive.

B References

Bierman, G., Abadi, M., and Torgersen, M. (2014). Understanding typescript. In
Jones, R., editor, ECOOP 2014 — Object-Oriented Programming, pages 257-281, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Devographics (2024). State of javascript 2023. https://2023.stateof js.com/en-US/
libraries/front-end-frameworks/. accessed 07/29/2024.

Grigorik, I. (2013). High Performance Browser Networking. O'Reilly Media, Inc., 1005
Gravensetin Highwy North, Sebastopol, CA 95472.

Instagram from Meta (2024). Instagram. https://www.instagram.com/. accessed
08/02,/2024.

Li, Z., Zhang, M., Zhu, Z., Chen, Y., Greenberg, A., and Wang, Y.-M. (2010).
Webprophet: automating performance prediction for web services. In Proceedings of the
7th USENIX Conference on Networked Systems Design and Implementation, NSDI'10,
page 10, USA. USENIX Association.

StatCounter (2024). Quick start. https://gs.statcounter.com/. accessed
07/18/2024.

Zhou, M., Giyane, M., and Nyasha, M. (2013). Effects of web page contents on load
time over the internet. International Journal of Science and Research (IJSR), pages
2319-7064.

Github repository: All code and additional material can be found under https:
//github.com/andreasnicklaus/master.

10

https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://www.instagram.com/
https://gs.statcounter.com/
https://github.com/andreasnicklaus/master
https://github.com/andreasnicklaus/master

	Introduction
	Setup of the application and testing environment
	Test results
	Summary
	Acronyms
	References

