HOCHSCHULE
DER MEDIEN

Masterarbeit im Studiengang Computer Science and Media

WIP: Mega-fast or just super-fast? Performance
differences of mainstream JavaScript
frameworks for web application

vorgelegt von

Andreas Nicklaus
Matrikelnummer 44835

an der Hochschule der Medien Stuttgart
am 9. August 2024

zur Erlangung des akademischen Grades eines Master of Science

Erst-Priifer: Prof. Dr. Fridtjof Toenniessen
Zweit-Priifer: Stephan Soller

Ehrenwortliche Erklarung

Hiermit versichere ich, Andreas Nicklaus, ehrenwortlich, dass ich die vorliegende
Masterarbeit mit dem Titel: ,WIP: Mega-fast or just super-fast? Performance
differences of mainstream JavaScript frameworks for web application* selbst-
stdndig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen
Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem
Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Anga-
be der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veréffentlicht oder
in anderer Form als Priifungsleistung vorgelegt worden.

Ich habe die Bedeutung der ehrenwdrtlichen Versicherung und die priifungs-
rechtlichen Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 24 Abs. 2 Bachelor-
SPO (7 Semester), § 23 Abs. 2 Master-SPO (3 Semester) bzw. § 19 Abs. 2
Master-SPO (4 Semester und berufsbegleitend) der HAM) einer unrichtigen oder
unvollstdndigen ehrenwortlichen Versicherung zur Kenntnis genommen.

Eislingen, den 9. August 2024

[

¥/
/f

14

Andreas Nicklaus

Zusammenfassung

Diese Arbeit kurz und knackig.

Abstract

This work in a nutshell.

Disclaimer: This paper has been written with the help of Al tools for trans-
lating sources and outlining parts of the written content. All content has been
written or created by the author unless marked otherwise.

Contents

(1__Introduction| 4
2__Related Workl 5
3 Design 5
8.1 Example Application|. o0 000, 5
B2 Choice of frameworkd.o oo 11
8.3 Hosting Environments| o000 11
8.4 Performance Metrics|o L. 13
8.4.1 Page Load Times|. 14

18.4.2 Component Load Times| 16

[3.4.3 Component Update Times|. 17

3.0 lesting Tools| oo 18

|4 Implementation| 20
4.1 Components|. e 21
B2 Tests . . . o o o 30
5__Evaluationl 44
p.1 Page Load Times| 0. 44
5.2 Component Load Times| 44
9.3 Component Update Times|. 44
[6_Conclusion 44
44
45
[B List of Figures| 59
[C_List of Tables| 59
D Acronyms 59

1 Introduction

Throughout the evolution of the world wide web, many changes have disrupted
the way websites are created. From simple file servers run by few selected
institutions, simple static web pages and dynamic services like blogs and forums
to websites created with the help UI tools and web development frameworks,
mainly written in JavaScript, development has changed drastically since its
beginning.

Older web pages often lacked features, that developers today work with as
a matter of course. Yet their load and rendering most likely would be brazingly
fast with today’s technological advancements in networking, browser functional-
ities and user equipment. Modern websites though are often bigger in size, have
a lot more features and are in many respects more complex. Due to the increased
complexity, the mere volume of a webiste’s data has increased, especially with
more and more multimedia files. That in return has increased the demand for
better performance on all components of the load and rendering process. This
technological advancement has upped the technological sophistication for devel-
opment tools as well. Today’s modern web development frameworks support
developers with tools to create sites and applications through terminal com-
mands. They often increase the content-per-line-of-code quota through implicit
page generation in contrast to the explicit writing of source code from earlier
times. Many frameworks even feature configuration options for directly hosting
the webpage.

As the generation process changed from writing code manually to auto-
matically, this implicit page generation undoubtedly increased speed through
faster content generation and a greater developer experience for some devel-
opers. Because developer experience varies between different frameworks and
some approaches are more intuitive to respective developers, a current trend
has evolved for developers to become experts in a single framework rather than
many. This trend leads to a tribal conflict as to which framework is better than
others with each tribe being convinced that their framework is the best. There
is no apparant way to determine a “best framework” in terms of Developer Ex-
perience because it is a subjective criterion. The performance of a framework
as assessed by the developer can be similar or greatly different, depending on
the frameworks and the interviewees.

When it comes to User Experience and especially the Perceived User Expe-
rience however, there are plentiful collections of metrics and criteria to choose
from so as to determine the performance of websites, not frameworks. The opti-
mization of websites has become a goal during development because it has a real
effect on both the ranking of web pages in search engines and the user behavior.
Both effects create business interests and financial incentives to invest resources
into performance optimization. However, the lack of research on the topic sug-
gests either a consensus for a negligible effect of the development framework on
the website’s performance or a lack of knowledge of the effect. Measurements
on the effect of the development framework are a major convoluted task simply
because the performance of a specific website can be dependent on many other
factors such as the user’s device, browser, networking hardware or server-side
hardware. The number of possible combinations of factors and their reliability
makes it difficult to measure a single performance run with a reliable result. Ev-

ery single result is only a small part of a large number of possible performances
the same application could achieve with different parameters. It is therefore
perceivable that a “perfect combination” of hard- and software exists for each
framework or in general, but it is currently not possible to find such a combi-
nation because the necessary data is missing.

Many modern web tracking services provide data about the user, the user’s
devices, current page load times and so on. This data is helpful in determining
current poor performances and therefore possible starting points for optimiza-
tion efforts. But it gives very little information about recommended actions or
recommended choice of frameworks for a redesign of a web application. Relying
on marketing material for choice of frameworks is equally questionable because
most modern frameworks claim to be fast, easy to use and performance efficient.
This suggests that each would be a great choice for developers.

In order to find a suitable framework for an application, a set of metrics
needs to be at least outlined for comparison. Many former studies suggest
metrics to be relevant for the User Experience or Search Engine Optimization.
Content metrics such as word count or presence of meta tags might be important
for some performance measurements, but might also have no effect on the User
Experience. In contrast, rendering metrics such as page load time or page weight
might be ascribed to the framework used during development.

The performance of a framework towards the user can very rarely be com-
pared because there are no publicly available comparisons between exact replicas
of web applications built with different frameworks. Therefore, a comparative
study between the same website built with different frameworks is needed to
get as close as possible to an exact website replica. With this data, an informed
choice might be made for other projects.

The goals of this paper are to propose a set of metrics that allow com-
paring mainstream JavaScript frameworks for web applications, to provide a
comparative study between selected frameworks and create a tool to compare
the rendering performance of a page as a whole and of dynamic components
within a page.

2 Related Work

3 Design

Whereas the following chapters cover the implementation of testing and evalu-
ation of results, this section introduces the concept of the comparative study.
The goals of and requirements for the example application, the differences and
choices for the hosting environments for testing and the tools for testing as well
as selected metrics will are described here.

3.1 Example Application

The example application for the study is designed to be a benchmark application
for testing. The following goals were considered during the design process:

1. Page types: With the goal of covering most kinds of webpages, three
types were identified based on the time of data loading. These types differ

in timing at which the DOM]content is loaded or updated. The definition
of a finished load or update for this work is that the linking of resources
does constitute a finished load or update of the webpage regardless of the
load time of said resource. The only condition for that is that any linked
resource does not update the DOM]in any way. If a resource does, then
the load or update is considered not finished.

(a) Static pages are webpages which do not change their content after the
initial response from the web server. The initial [HTML] document
already is the only resource that is necessary to create a complete
[DOM] If inline skripts update the DOM, they are considered external
resources.

(b) Delayed pages do not have a complete[DOM|after loading and parsing
of the initial [HTMI] document. Some data or content is loaded and
inserted (or removed) into the after the initial render. The
time of these updates can be any time after the initial render, but
the execution of code or start of request for the resource that is
responsible for the update has to be directly or indirecly triggered by
the content of the initial DOM] or [HTMI] document.

(c) Dynamic pages can be updated or update themselves by events that
are not triggered by the content of the initial [DOM] or [HTMI] doc-
ument. These events can either be triggered by user interaction or
other events such as websocket messages. The time of such updates
is by their nature not predictable. Dynamic pages are either static
or delayed with additional possibilities for updates.

This list is created with the knowledge that frameworks or other technol-
ogy such as caching may move a webpage from one type to another.

2. Modern Development Practices: The example application should
contain modern development practices that do project onto the [DOM]
Practices that have no effect on either the projection of data or user in-
teraction, such as coding styles or project management, are considered to
have no effect the performance of the page.

(a) Components: All pages of the app have to consist of components that
encapsulate reproducable [HTML]snippets and may project data onto
the DOML

(b) List iteration: Because iterating long lists may decrease performance
noticably, some components or pages should implement list iteration.

(c) String interpolation: Although it is not considered a performance
issue before testing, string interpolation is prevalent in all modern
frameworks known to the author.

(d) Services: Separation of functions in services is wide spread practice
to reduce code duplicates and easy refactoring. In this case, services
also allow to intentionaly implement delays for testing purposes.

3. [CSS} Even though the usage of [CSS| can in no way be considered a mod-
ern practice, it is still used on effectively every webpage. Additionally,

stylesheets are considered render-blocking resources that impact perfor-
mance negatively (MDN Mozillal [2024b}; |Googlel 2019al)). For this purpose,
[CSS| shall be implemented for both pages and components.

4. Rendering time: In addition to page type depending on the time of data
load, the machine and time of composing the [DOM]is dependent on the
content availability. For this paper, three different types are considered:

(a) [Client-side Rendering (CSR)} The initial request gets a response with
a mostly empty [HTML|document (“skeleton”) except linked and
[JS] resources which after loading, parsing and execution update the
[DOM]

(b) |Server-side Rendering (SSR); Updates that happen after receiving
the skeleton through [JS| code execution on [CSR] happen before the
initial request is responded to on the web server. The initial [HTMT]
document is filled and no longer a skeleton with [SSR]l Therefore,
it has greater byte size. [Server-side Rendering| requires an “active”
front-end server rather than only a file server to execute code.

(c¢) Prerendering: Rendering happens during build time of the applica-
tion. This increases the build time and the byte size of the initial
[HTMT] document, but only a file server is needed for hosting.

5. Multimedia: Most of network load and therefore network delay is made
up by multimedia files. Although compression has gotten better over time,
the byte size made up by multimedia files of a webpage has gotten larger
over the last years. Therefore, size optimization of image and video files is
considered a major part of performance optimization and a great potential
for a performance increase by the used framework.

Based on these considerations, the application “NotInstagram” was designed
as a comparable example application. It is heavily inspired by Instagram and a
partial reproduction of its app design (Instagram from Meta), 2024)). “NotInsta-
gram” consists of four pages (see figure li. . shows the design of the Feed page.
It is the start page of the app and contains 4 parts: the header, the profile list,
the post list and a footer. Each item of the feed page is to be implemented as its
own component or components. The plus icon in the header links to the create
page, the footer links to the about page and every instance of a profile picture
and profile name links to a profile page. The latter contains profile information
including a profile picture, name, user handle / ID, profile creation time, cap-
tion and a grid of all the user’s posts (see figure [1b). The profile component
encapsulates all [HTMTI] elements of that page except the header containing the
app logo and X icon, which both link back to the feed page. Both the feed page
and the profile page are generally expected to classify as delayed pages, because
the content of profile and posts lists can only be loaded after the page load.

The Create page (see figure has three parts. The header contains the
app’s logo and a X icon linking to the feed. A form with three <input> elements
and a <button> element allows the input of an multimedia source (image or
video) and a text caption. The multimedia source can either be an URL or
a selection from a list of preuploaded files. The post caption is a pure text
input. The lower part of the page is the post preview, in which some predefined

information such as user profile and the user inputs are combined. As such,
the profile page is a static page until the user uses the creation form, at which
point is has to be considered a dynamic page. The About page (see figure
is designed to statically display information about the application. It is a static
page because no content is loaded after a delay and no user inputs are possible.

With these pages all [page types|are covered for testing. The About page and
Create page are static, whereas the Feed page and Profile page are partly static
(header and footer), but mostly delayed. The Create page is the only page with
dynamic content.

Nnt/n;laymm N vE®) Notlnstagram X
e @PeterPoster
Your Profile Peter Poster Tina Traveller Lars Local Father, Athlete, Influencer in that order
Marketing Manager @HdM
° Peter Poster Hther it finfuencer

O oW o
196 likes

Ifyou read ihis, you are great Have a fantastic time
doing whatever it i that comes to your mindi

#ootd #foodie #ineverthoughtthisdayw roukdcome

5 Tina Traveller

(a) Feed / Index Page (/) (b) Profile Page (/user/@PeterPoster)

Notlnstagram X ‘
oL
This is

Notlnstagram

created by

o Peter Poster Andreas Nicklaus
@ @andreasnicklaus
@andreasnicklaus
q an067@hdm-stuttgart.de

Nothing to see yet...
Choose an image to continuel

What is this?

§ This project is part of the master thesis with the
Olikes itle

Nothing to see yet..
Insert a #caption to continue!

(c) Create Page (/create) (d) About Page (/about)

Figure 1: Screenshots of the NotInstagram application’s pages (path in paren-
theses)

The data fetching and loading is designed to be implemented as[services| For
NotInstagram two different services are needed. The PostService is a service for

all components to query posts. The method getAll() returns a list of all
posts by all users and getByUserHandle (handle) returns the same list filtered
by those posted by a user with the handle equal to the function parameter.
ProfileService is a service to query user profiles. It has the same two methods
which return all user profiles and only one user profile respectively. Services
are designed asynchronous, but the data is not queried from a server external
to the browser, but hard coded. This design decision is based on the premise
that delay can be coded into or out of asynchronous functions to mimic network
delay for testing purposes if necessary.

Figure [2] describes the usage of components and services within page views.
It displays the four pages of NotInstagram as views, the two services and 15
components. Seven of those components are icon components. Those compo-
nents serve as wrappers for[SVGE to ensure their correct scale and style. XIcon
poses an exception to the design as it is a wrapper for a PlusIcon component
rotated by 45°. The colored arrows show the usage of one of the services. Both
FeedView and ProfileView use both services to load data. For the Feed page,
both PostService.getAl11() and ProfileServices.getAl1() are needed to
pass the data to PostList and ProfileList. Notably, each Post component
accesses the ProfileService again, to get the profile image and name for its head-
line, even if the information is available in a parent or grandparent component.
Figure[3]displays the connections between post and profile object instances. The
member userhandle of a post references the member handle of a user profile.
The Profile page needs access to the service to get the information of the re-
quested profile and a list of posts from the getByUserHandle methods to pass
into the Profile component. LogoHeader, NotInstagramLogo and InfoBlock
are not data-presenting components, but rather styling components. Their only
function is styling text or projecting [ITMI] elements with [CSS| information.

In contrast, the MediaComponent is designed as a way to allow both internal
and external images and video source. It is used by ProfilelList, Post and
Profile to display posts and profile images. It’s main goals is to decide based
on the passed image source string how to project the multimedia file onto the
[DOM] The component accepts source strings for images and videos, differenti-
ated against by the string’s ending and therefore the file’s extension. If it is a
local image, namely an image that was available for optimization at build time,
the best available form of optimized tag should be used. For external im-
age links starting with “http://” or “https://” a less optimized or unoptimized
 tag shall be inserted into the [DOM] For videos, any source string is to
be projected onto a <source> tag with identical <video> wrapper.

The application referres to local images, which can possibly be optimized,
and external images, which cannot be optimized. The reason for this is the
assumption for this project that optimizing multimedia files uploaded by a user
and referencing them in a manner suitable for this application is not suitable
for this work. Rather, the better alternative for serving the use case of the
application would be a dedicated server for encoding, decoding and generally
optimizing multimedia files. Since this solution would be independent from the
front-end framework’s performance and it would outgrow the scope of this work,
a distinction is only made between static images, called local images here, and
external images with full URLs.

Post Service Profiie Service

getByUserhandle(handle) getByUserHandie(handle)

mL’-'q ‘
L) %

L

InfoBlock

Logoheader ‘ ProfileList ‘ ‘ Infolcon ‘ ‘ Profile

PostList
Post J

MediaComponent

ogo

\-»‘ Xicon }q—z
[Plusicon

Beokmarkicon
Hearticon

Sendicon

Figure 2: Pages, Components ands Services of the NotInstagram application

Post Profile
+ userhandle: String [+ username: Siring
+ caption: String I"-> + handle: String
+ mediaSource: String + profilelmageSource: String
+ likeCount: Integer + caption: String
+ createdAl: Date

Figure 3: Classes used by the NotInstagram services

3.2 Choice of frameworks

The choice of tested frameworks for this study is the choice for which frame-
works the application will be implemented in and tested. The requirements for
this selection are twofold. The application has to be implementable as designed
above with the framework without the use of any other non-native tool to the
framework or any tool that was not officially intended to be used in combina-
tion by the developers of the primary framework. Additionally, the application
must be implementable in JavaScript. This requirement includes TypeScript
frameworks because it is possible to use JavaScript in TypeScript applications.
Ease of use and developer experience should explicitly not influence the selection
process because it is part of the evaluation of the frameworks.

Because research revealed in early stages of the study that many frame-
works fulfil those requirements, the long list of candidates had to be sorted.
The deciding factor for this selection was usage, awareness of and positive sen-
timent towards tools among developers because the evaluation of mainstream
and general-purpose frameworks appear more valuable than lesser known or
specialised tools. A ranking of the most-used JavaScript front-end frameworks
of 2023 (Devographics| [2024) lists the four frameworks with the most developers
who have used it before: React (84%), Vue.js (50%), Angular (45%) and Svelte
(25%). In addition, Astro was chosen for its especially high awareness among the
category “other front-end tools” (30%), as well as its usage (19%) and interest
(62%) in the category “meta-frameworks”. From the last category of tools, two
other frameworks were selected: Next.js and Nuxt. Both tools are highly-used
frameworks and have the appearance and goal of improving React and Vue.js,
respectively. For this reason, they are interesting choices for this study. All
selected frameworks fulfil the requirements. The application is implementable
with all frameworks or intended addition of tools. Next.js and Nuxt require the
usage of React or Vue.js tools and dynamic components cannot be written in
pure Astro. Astro intends the usage of other frameworks to implement so-called
“islands”. For those components, React was chosen for its top usage rate.

Other frameworks were also considered for selection. Solid and Qwik seemed
fitting candidates in this study because of high interest among developers and
apparent potential for fast performance of their end product. Additionally, from
the ranking of most-used front-end frameworks Preact was considered with a us-
age percentage of 13%. Ultimately, all three were not chosen because of negative
sentiment or low usage among developers. This concludes the framework selec-
tion for this study. Table [I]list the selection and categorizes them into groups
with and without [CSR] and [SSR] It also states whether the developer for the
application had any previous experience working with the framework. This in-
formation is important for the unintended performance optimizations and can
later be used for interpretation of the frameworks performance measurements.
Plus, it will influence the assessment of ease of use and developer experience.

3.3 Hosting Environments

After designing the application, the next step in the study process was to decide
on where the application is to be hosted for testing. Network delay is a great
part of render delay and performance issues because loading files in sequence
will block rendering if parsing documents and executing code is dependent on

11

Framework |C S El |S S E] Previous Experience
yes no

Angular yes
Astro yes yes yes
Next.js no yes no
Nuxt yes (generate) no (build) no
React yes no yes
Svelte yes no no
Vue.js yes no yes

Table 1: List of selected frameworks. Items with both CSR and SSR render
some pages or components upon request, but also require CSR

navigationStart
redirectStart
redirectEnd
fetchStart
domainLookupStart
domainLookupEnd
connectStart
(secureC i t)
connectEnd
requestStart
responseStart
responseEnd

Prompt A
for redirect PP DNS TCcp Request Response Processing onlLoad
unload o

unload \ /
~ loadEventEnd
loadEventStart
domComplete
domContentLoaded
dominteractive
domLoading
unloadEnd

unloadStart

Figure 4: Timing attributes defined by the PerformanceTiming interface and

the PerformanceNavigation interface (W3C} [2012)

network requests. The request delay is based on the speed of the web server, the
size of the generated file, request and response and the network speed. Therefore
the time needed for fulfilling network requests should be considered in the choice
of hosting environment or service.

Figure [illustrates how a slow network may delay the rendering process of
a webpage. The tests for this study shall cover real-world hosting using pub-
licly available services and local hosting to both test the network delay and
test the application without interference of network speeds. Additionally, tests
can not be done only on local servers because tests shall include timings before
responseEnd. Requirements for the distant hosting environment or service are
threefold. The service shall have “active server capabilities”, meaning capabil-
ities that exceed pure static fileserver functions for [Server-side Rendering| and
similar functionalities. Furthermore, it is required to be a widely used hosting
service to ensure the real-world applicability of the study. Since this requirement

12

is not clearly applicable, it is considered a guideline. Lastly, to be applicable
for small projects as well as established larger websites the service chosen fo the
study is required to support free usage and integration into a [Continuous Inte-|
[eration and Continuous Delivery (CI/CD)| configuration because it is a widely
used development practice. As such, the integration is important to require
the least possible manual configuration for hosting the application because this
study is not supposed to be about the configurability. Rather, the study shall
focus on the "out of the box" performance of the frameworks. Continuing with
that sentiment, the optimization and therefore configuration of the hosting en-
vironment is not part of this work. This is the methodology for answering the
question: With which framework do developers get the best performance for
their web applications without spending much or any time with optimization
and configuration?

Based on these considerations and personal experience with the service, Ver-
cel was chosen for hosting the application for this study. Vercel supports prede-
fined configurations and automatic recognition of all frameworks chosen for this
study. Also, Vercel projects integrate seamlessly into aprocess based on
its integration with Github. A Github repository was created for each framework
and connected to a Vercel project. During initialization of the Vercel projects
and first preliminary tests, one problem with Vercel’s free account quickly be-
came apparent: The bandwidth limitation of 100GB per month and account was
reached after two weeks of testing unoptimized and unfinished versions of the
applications with large image and video files. Because no information was found
on the effect of a reached limit, the account was deemed dead for the month.
The solution to this problem was the creation a second free Vercel account and
the plan to create another account every time the limit would be reached in the
future, which it did not.

The second hosting environment for this study is hosting the application
locally on the testing machine. This environment ensures minimal network load
times and eliminates every other connected delays such as resolving domain
names. If the framework supports a “preview” mode, it was used for hosting
the application. Otherwise, the application would be build and hosted using the
serve command or the active server would be started with node <filename>. If
neither of the two options would be available, the “dev”’ mode of the application
would be used and tested. Table [2] lists the used commands for building and
starting the webserver per framework.

3.4 Performance Metrics

The load time and reactivity of a web page and its user interface decreases user
retention and continuing user actions over time independently from the content.
The “reaction time” is interpreted in three separate ways for this study: The
page load time, meaning the time from navigation start to [DOM] mutation, the
time from a state change, e.g. data query end, to [DOM] mutation, here called
component load time, and the time between a user input to finished [DOM]
mutation, called component update time for this study. Nearly most of these
times can be combined from or described using navigation events (see figure
4). These timing categories are not exclusive, but measurements for these time
categories do overlap.

Naturally, other metrics than the navigation timings were also considered.

13

Framework | Build Command Host Command

Angular ng build serve

Astro astro build astro preview

Next.js next build next start

Nuxt nuxt build nuxt preview
nuxt generate nuxt preview

React react-scripts build | serve

Svelte vite build vite preview

Vue.js vite build serve

Table 2: Build and host command for each used framework as used for testing
the applications hosted locally

From the list of measurements in Lighthouse reports (see chapter , sublists
with relevant metrics were created to properly represent the time measurements
of the described render sections and DOM mutation events. These reports
cover the initial load of a page and visual content presentation after initial load.
None of the Lighthouse metrics cover the time of [DOM| mutations after user
input events. Therefore, yet additional measurements have to be considered to
describe the performance of mutations. To this end, some self-written code is
injected through Playwright (see chapter to measure the time of updates
to the DOM] The following sections describe which measurements are needed
for each render section in detail.

3.4.1 Page Load Times

In the context of this study, the first contact point for a user to a web page is
considered to be the first page load or initial page load. Within the initial load,
the user’s main expectations and goals are assumed to be finding a page with
the wanted information or input rather than finding the information itself. As
a result, the aim of the client’s browser and render engine for this first time
frame, called “page load” here, is to both parse [HTML] and project the content
of the page onto the DOM] In order to focus on this time frame, these metrics
describe the application’s performance.

e [Total Byte Weight (TBW)} The total size of files or content of response

directly increases either the App Cache time between fetchStart and
domLoading or domContentLoaded if the resource can be cached in the
client or the response time between responseStart and responseEnd
otherwise.

¢ [Time To First Byte (I TFB)} The time between navigationStart

and responseStart. Most of the network delay can be described by the
[TTFB] Often inaccurately paraphrazed as “ping”.

e [Time To Interactive (TTI)} The time until the page can be interactive,

described by the DOM[s loading state “interactive”. By navigation events
described as the time between navigationStart and domInteractive.
Notably, the timing of domInteractive is not reliable because a [DOM]

14

may become interactive, but the browser may not be interactive yet. Ad-
ditionally, resources may still be loading. For example, a [DOM] from
a [HTMI] skeleton may be “interactive” after a few milliseconds, but no
content may be rendered for the user to see (Web Hypertext Application
Technology Working Group, 2024), because|CSR]code is still loading (Web:
Hypertext Application Technology Working Groupl, [2024).

¢ DomContentLoaded: Similar to [I'TI] DomContentLoaded measures
the time between navigationStart and domContentLoaded. At this point
in time, “all subresources apart from async script elements have loaded”

(Web Hypertext Application Technology Working Group, 2024). A large

difference between [I'TFB| and DomContentLoaded indicates a great size
or at least long load time of subresources.

e LoadEventEnd: Total time spent imidiately after initial load of a page
until the DOMTPs onload event is finished. This is the time from
navigationStart to loadEventEnd. The time represents both the ca-
pability of the used framework to optimize the usage of a client’s and
network’s resources on initial load and the priorization of JavaScript exe-
cution by splitting not immediately needed code into async scripts.

e [Total Blocking Time (TBT)[The total time spent by a browser with
parsing and optionally resources that block the rendering process from
finishing. This includes stylesheets and scripts without the async or defer
tag. The metric directly represent the time before the browser can fulfil
the user’s goal on initial load.

e [Last Visual Change (LVC)| Time from navigationStart until the last
visual change above the fold, meaning within the viewport of the user.

e [Largest Contentful Paint (LCP)l The time between navigation to
the page and the time of rendering for the visually largest text or image
element in the user’s viewport 2020). Optimization of this metric
requires and understanding of the page’s content and element size within
the viewport.

From this list of relevant metrics, some expectations can be formulated be-
fore testing for them. First, [TBT]is most likely slower with [CSR] frameworks
because the code execution filling the [HTMI] skeleton takes some time that is
not necessary in client with SSR and Prerendered pages. On delayed pages this
difference is expected to be very slight or nonexistent. Second, the [LCP| proba-
bly will not differ across frameworks, but naturally across pages. In contrast, if
a framework does create a faster result for its [LCP)] it is expected to be a[SSR]
or Prerendering framework because of its expected shorter [TBT| Third, [CSR]
frameworks differ from [SSR]and Prerendering frameworks by [Total Byte Weight]
similar to [Largest Contentful Paint] Although the [HTMIL] document is much
slimmer with [CSR] the [JS|files are expected to be equally larger than server-side
rendered and prerendered pages. It is probably nearly equal in sum because the
byte size of the page is likely mostly made up from multimedia files such as
images and videos, [CSS] and [JavaScripf] files. Fourth, the selected frameworks
should be inversely seperable into groups by the[Iime To First Byte] Most likely
[CSR]and Prerendering frameworks will be faster for this metric because the web

15

server can serve as a static fileserver and does not have to execute any additional
code. Fifth, because [CSR] pages consist of only nearly empty [HTMTI] skeletons
and links to [JS] and [CSY|files, the [T'T])is expected to be much faster for [CSR]
pages. Lastly, the timing of the loadEventEnd is not clearly predictable before
testing. The only expectation is that newer framework perform better in this
metric simply because they are newer and are expected to make optimizations
that go into a faster parsing and rendering of a web page.

With these expectations it would be most interesting to see the differences
between CSR and SSR frameworks. From the list of selected frameworks for this
study, those frameworks with direct competitors are Nuxt compared with Vue.js
as well as Next.js in comparison to React. Additionally, Angular and Svelte in
the group of CSR frameworks shall be compared with the SSR framework group
with Astro.

3.4.2 Component Load Times

As a second category of relevant metrics, measurements for the separation of
the app into components are grouped together. This category is designed to
reflect the performance of the [JavaScript| that was generated by the framework.
This stands in contrast to how much content can be rendered by the time of
responseEnd. To this end, only measurements after responseEnd can be taken
into consideration. Each mutation from the initial DOM] has to be interpreted
as a update to a component. The following metrics are part of this category.

e LoadEventEnd: The time between responseEnd and loadEventEnd.
It combines all render-blocking parsing and synchronized code execution.
Therefore, it is a combined indicator from the code performance and gen-
eral optimization.

¢ |Observed First Visual Change (OFVC)| The time of the first visual
update from a blank canvas. It is an indicator for the start of visual
rendering and a signal to a user that the page is working or loading. For
pages with itneractive elements, this metric is less important that the[TTI

e |Observed Last Visual Change (OLVC)} The time of the last visual
update to a web page. The metric is the most promisiing for this study
as it indicates the end of the perceptable rendering process and therefore
perceived load speed.

e Mutation Times: Time from initialization of the app with a predeter-
mined [HTMT] element such as <main> to a [DOM] mutation. See section
[3-4.3 for more info on this.

 TBT
o [TTTl

Based on the intention for testing these metrics, comparing or optimizing
frameworks, the following expectations were presented before tests.
First, prerendered and [SSR] pages are expected to show a earlier [FVC| because
the execution of any code for delay components can start earlier. This expec-
tation comes from the added code of [CSR] applications to add static elements

16

to the [DOM] through [JS| Second, [CSR] applications probably finish their [LVC]
slightly earlier than other applications. The assumption for this prediction is

that every application starts long tasks only after the [HTMLI] was parsed which
takes longer for [SSR]or prerendered pages. As a result of these two expectations
the observations of a MutationObserver most likely have a lower maximum and
are less spread out for [SSR] and prerendered pages, but start later than [CSR]
pages. Third, as described above, the [TBT]is expected to be slightly later for
[CSR] than for [SSR] or prerendered applications and fourth, [CSR] apps should
have a slower [TT1l

With these metrics, identifying bloated applications and components is the
goal. that is loaded, parsed and executed that increases the initial
load time of a page should be indicated through these tests. Such unnecessary
or render-blocking scripts are pointed out through [TBT]| and littele difference
between [FVC| and [LVC] For example, a script can be considered unnecessary
for initial load if it is executed before rendering that only defines functions,
initializes objects that are not yet needed or creates a blocking dependency
chain, e.g. through importing another script.

3.4.3 Component Update Times

For the third category of relevant metrics, [DOM|mutation stemming from events
triggered by the user are grouped together. These event influence the user
experience on the condition that they lead to[DOM| mutations. Only two kinds
of measurements can be made to gain insight into update speed although three
measurements are perceivable.

e User Input Times: The time of a user input. The kind of user input
is not restricted to onInput or onChange events, but rather any event
triggered by the user.

e State Change Times:The time a state changes after user input. This is
usually not automatically directly testable because the internal function-
ality of the framework is not always observable.

e Mutation Times:Time of a mutation from user input within a prede-
termined element such as <main> to another mutation. A
MutationObserver is initialized and all mutations are recorded. Desig-
nated mutations to the [DOM] are added child elements, removed child
elements and attribute updates (added, edited and removed).

For these metrics no expectations could be formulated before testing because
the speed of an mutation is purely based on the implementation of the framework
itself. These implementations are not openly accessible without knowledge of
the frameworks’ source code. Still, some prediction can be made independently
from a specific framework. Apps that represent their state in the DOM, e.g.
an “edited” state for a user input or an updated value attribute of an <input>
element, will most likely have. ..

1. more entries in the recorded [DOM]| mutations and. ..

2. a later last entry in the recorded DOM] mutations.

17

Also, the implementation of the app shows differences here as additional
elements, such as <div> elemets as wrappers for each component can influence
the time and number of updated elements in either direction, dependent on the
use case. To summarize some comparisons between frameworks or groups of
frameworks, the most appealing for the evaluation are the following.

1. [CSR] - [SSR} Before testing, deifferences between [CSR] and prerendered
pages are expected, but the metrics and amount of differences are a proba-
ble subject of interest. Because there is no perceivable differences between
prerendered pages and server-side rendered pages from a client perspec-
tive, they are grouped together in this context.

2. Angular - React - Vue.js: Because these [CSR] frameworks have been
competing for eight years at this point and they are still the most fa-
mous front-end frameworks (Devographics, 2024)), the comparison of these
frameworks is relevant for this study.

3. Nuxt - Vue.js:As a next generation of the Vue.js framework, the actual
performance increase of Nuxt is interesting for developers.

4. Next.js - React: Same as above

5. Vue-based - React-based: Because a direct comparison of frameworks
based on React and based on Vue.js is possible with multiple candidates, a
difference in performance is an actual relevant factor for the choice between
the ecosystems.

6. Svelte - Astro: As the most modernly popular frameworks in the se-
lection of frameworks, Astro and Svelte have the potential to both outdo
their contenders and outdo each other. This comparison is most interest-
ing for fans of new tools and the development teams of the frameworks
themselves.

3.5 Testing Tools

In order to test for these metrics, a set of multiple testing tools is needed. These
testing tools are required to cover the measurements describe above and the
tools have to work with similar configuration for all selected frameworks. Test
reports have to be generated in a machine-readable format in order to evaluate
the results and create aggregate metrics from them. This is a requirement
because from previous experience it is known that performance values in the web
development context have a considerable variance. To this end, two different
tools for automating tests were chosen:

1. Lighthouse [CLI} The Lighthouse [CLI| makes it possible to automate the
generation of Lighthouse reports. Tests for these reports combine mea-
surements with weights in categories and reduce them to a single score, as
well as five main category scores. These categories are performance, acces-
sibility, best practices, [SEO|] and PWA] Additionally, Lighthouse reports
contain recommendations for optimizing metrics and increasing the scores.
It is a popular tool for measuring the initial page loads, page content and
meta information for a web site. Changes after the initial page load are

18

not possible to test with the Lighthouse [CLI} Reports are by default gen-
erated as[HTMT]files, but the tool was configured to generate both [HTMT]
and [JSON]reports for this study. Since Lighthouse is designed to test live
websites in production, the tool does not support starting a local develop-
ment server. Testing with Lighthouse therefore needs to include building
and hosting the application locally while tests are running.

2. Playwright: Playwright is a front-end testing tools for web applications
in development. It mainly supports checking page content, but also sup-
ports the execution of injected [JavaScript]and full control over the browser.
This also means that the control over the user inputs enables measure-
ment of timings connected to user behavior such as clicking links and
buttons, hover the mouse over elements or using <input> elements. Such
options are needed to evaluate the timings of interactive elements. The
development-focused design also bears the advantage of its initialization
being included in some framework’s initialization options. Both Svelte
and Vue.js support installing and initializing configuration for Playwright
in their own initialization (see chapter {4| for more on this). Similar to
Lighthouse, reports can be created as [HTMI] and JSON| files. For this
study, only [JSON] reports were used for the results, but [HTMI] reports
were used for debugging tests.

Although all requirements can be fulfilled with these tools, multiple prob-
lems were found with them. Because Lighthouse reports include data that is
influenced by all actors and constraints regarding the web page, many factors
contribute to the variability of its results. |Google| (2019b)) contains a list of
sources of variability. The relevant sublist of factors for this study contains for
local tests client resource contention, client hardware variability and browser
nondeterminism. Client hardware variability is mitigated through the usage
of the same client device for all tests. The client device in question is a HP
Envy x360 Convertible 15-eu0xxx with an AMD Ryzen 5 5500U processor and
16GB RAM. The operating system on the device is Windows 11 Home (Ver-
sion 10.0.22631) during testing. Client resource contention could not be fully
mitigated. Attempts to keep a lid on client resources was killing the most hard-
ware intensive background tasks and services on the test machine before starting
tests. Browser nondeterminism was taken into account and adopted as a test
dimension because the target group of an application should be factor for the
choice of framework, especially for purely desktop or mobile applications. To
this end, tests were executed with the most commonly used browsers wherever
possible. For Lighthouse tests, such an option was not found. Instead, all tests
were explicitly executed on Google Chrome for desktop. A Lighthouse report
was not generated on other browsers.

For tests on a distant server, other factors contribute to the fluctuation of
Lighthouse test results in addition. Local network variability, tier-1 network
variability and web server variability have to be considered for the tests. The
first two could not be mitigated. The internet connection speed at the test
location was 100 Mbit/s to simulate common modern consumer internet con-
nections. Web server variability could not be mitigated as well. For this reason,
a hosting service was explicitly chosen for all tests to minimize the variability
across frameworks (see section .

19

For mitigation of all factors of variability, Lighthouse tests were executed 20
times to gain an average of all measurements. The repetitions were configured
with the same browser context and web server for local tests for each run. The
reason for this decision is that fluctuations based on the first requests within
the client or the server should be mitigated with this method.

Two additional problems with Playwright were found before the start of the
test phase. The time of injection for [J§|script could not be properly determined.
This fluctuation could not be mitigated. Also, reading data from the window
context after the fact proved to be difficult because the context closes after the
test ends and the report only contains explicitly tested values. Objects such
as the needed navigation timings are no longer available after the fact. The
solution to this problem was to attach all necessary information as a file to the
report so it is readable after the context closed.

With all tools and workarounds in place, the data needed for the study could
be collected. Lighthouse covers [TBW] [TTFB]| [TTI, [TBT], [CCP] [FVC], [OFVC]
and [OLVC] whereas Playwright cover all navigation and [HTMI] event times,
namely DomContentLoaded, LoadEventEnd, user input times, state change
times and mutation times.

4 Implementation

This chapter contains details of the implementation and the strategies for cre-
ation of the project as well as for the separation of projects for each framework.
The goal is to define taken steps to ensure reproducability and tracability of
implementation choices and, as a result, interpretability of the results in the
following chapter.

The implementation for each framework was started using the official “get
started” guide on the framework’s website (Google LLC, 2024; Schott], 2024
[Vercel, Inc.| [Chopin et al., [2024; Meta Platforms, Inc., 2024} Sveltel 2024
[You, Evanl, 2024). Each website provides a command which creates a project
directory and project files. The initialization options for the creation process
were chosen with the following rules.

1. The project is to be created as empty as possible to ensure the focus on
the framework “as is” rather than how it can be configured. No demo
projcet is chosen if an option with fewer preconfigured files is available.

2. No testing tools is to be preconfigured except Playwright. If Playwright
is not an option, then no testing tool should be chosen.

3. Otherwise the default options (recommended or first) should be chosen.
If “none” is an option, it it should be selected.

After the initialization under these rules, the app’s four pages and compo-
nents as well as routing between the pages were configured. After creation of the
Vue.js and React app, each component’s template, code and style information
was copied from either their Vue.js or React counterparts and adapted to the
framework in question to speed up the creation process. Only after this process
optimization efforts such as configuring image components (see section and
adaptation to the hosting environment were performed.

20

=W N =

ot

Additionally, project directories were separated into Github repositories.
The separation is a requirement for hosting with Vercel as a maximum of three
Vercel projects can be hosted from the same repository. This study exceeds this
limit. This limiting condition entails that all testing configuration could not
be centralized, but had to be duplicated across repositories. The setup of the
testing environment has been the last step of the project creation (see section

4.2).

4.1 Components

While most of the design decisions for the components of the application have
been made during the design of the application itself, the design choices con-
cerning the implementation of said components are open to adaptation to the
framework. The goals for this implementation period are few. First, the im-
plementation for each framework should be as similar to the others as possible,
meaning the [HTMTI] elements should be the same. Second, the implementation
should follow the design language of the framework. Therefore no principles
should translate from one implementation to another if they do not fit to the
framework’s design principles. Third, it has to follow the component design as
described in section [3.1] If the design of the example application cannot be fol-
lowed, changes are to be as minimal as possible. This section describes selected
components and code snippets where they are either interesting for the perfor-
mance, unforeseen choices or where they differ notably inbetween frameworks.
The author of this study had had the most experience with Vue.js prior to this
project. For this reason, code snippets in Vue.js have the most presentability
and code snippets in this paper are shown in Vue.js wherever possible. The
components described in this section are the About and the Create page, the
Post component because it has two variations and the MediaComponent.

The About page is an interesting case because, as described in section [3.1] it
is the only static page of the application. Its components and [HTMI]children are
therefore also static. Figure [5]shows a graphical overview of the page’s contents
from a [DOM] perspective. Because of its static nature, it is also the only page
that can be fully prerendered. Notably, the lower part of the page consists
of multiple subcomponents <Infoblock> with a title passed as a prop and a
paragraph passed in a slot as a[HTMTI]child for the component. Functionally, its
only purpose is styling and its only effect on the[DOM]is the addition of a <h2>
and a <p> element. The other imported subcomponents <NotInstagramLogo>
and <SendIcon> are also wrappers for a <h1> and a element, respectively.
Listing [1| demonstrates the static nature of the page view and the hard-coded
addition of all text and multimedia in the template.
<!-- AboutView.vue -->
<template>

<div id="AboutView">

<RouterLink id="top-backlink" class="backlink" :to="{ name:
>Feed’ }"> back </RouterLink>

<p class="cursive">This is</p>

<NotInstagramLogo />

<img class="transparent logo" alt="" width="40%" height="240"
loading="lazy" :src="Logo" />

<p class="cursive">created by</p>

21

div#AboutView

NotinstagramLogo

Sendicon

InfoBlock

InfoBlock

InfoBlock

InfoBlock

InfoBlock

IIIII | ‘ | ‘ |

Figure 5: Graphical subdivision of the About page into components (Welches

Diagramm ist besser?)

[m] diviAboutView
\ p | | p |
a
[»] ——p
div MoftinstagramlLogo
——img
E—
E—
——div
P

|—Send|c0n
——InfoBlock
InfoBlock
InfoElock
InfoBlock
InfoBlock

22

MotinstagramLogo
h1

InfoBlock
h2
p

11 <p class="cursive big">Andreas Nicklaus</p>

12 <div id="socials">

13 <p>

14 <a href="https://github.com/andreasnicklaus"

target="_blank">
15 <img class="transparent" width="29" height="29"
loading="lazy" :src="Github" />

16 Qandreasnicklaus

17

18 </p>

19 <p>

20 <a href="https://www.linkedin.com/in/andreasnicklaus/"

target="_blank">
21 <img class="transparent" width="29" height="29"
loading="1lazy" :src="LinkedIn" />

22 @andreasnicklaus

23

24 </p>

25 <p>

26

27 <SendIcon/> an067@hdm-stuttgart.de

28

29 </p>

30 </div>

31

32 <InfoBlock title="What is this?">

33 This project is part of the master thesis by

34 </InfoBlock>

35 <InfoBlock title="Placeholder 1">

36 Lorem ipsum dolor sit amet, consectetur adipiscing

37 </InfoBlock>

38 <InfoBlock title="Placeholder 2">

39 Pellentesque diam volutpat commodo sed egestas

40 </InfoBlock>

41 <InfoBlock title="Placeholder 3">

42 Nec feugiat nisl pretium fusce. Sagittis id

43 </InfoBlock>

44 <InfoBlock title="Placeholder 4">

45 Ullamcorper malesuada proin libero nunc. Netus et

46 </InfoBlock>

47 <InfoBlock title="Placeholder 5">

48 Adipiscing elit pellentesque habitant morbi

49 </InfoBlock>

50

51 <RouterLink id="bottom-backlink" class="backlink" :to="{ name:
’Feed’ }"> back </RouterLink>

52 </div>

53 </template>

Listing 1: About page in Vue.js

The Create page poses an opposite to the About page. In contrast to a static
page with non-changing content, the purpose of the Create page is to preview
a new post. Its purpose is to update after user input. Listing [2] and [3] show
the implementation of the Create page in Vue.js. The data of the component
has four dynamic parts: The options and the choice for the selection of the
post image in a <select> element, the caption of the new post and the media
[URT] for the <input> element. The last data point for the component is the
user handle, which is static for the preview in this example application. The
computed property mediaSource (see listing (3] line represents the logical
choice between the media selection and source [URL] for the multimedia file

23

W N =

O 0o~ O Ut

10
11

12

13

14
15
16
17

18

19
20
21
22
23

25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43
44

in the previewed post. This template contains a static <header>, the <form>
with dynamic attributes and a Post component. This subcomponent hast to be
dynamic and reactive to its props as they are changing throughout the process
of post creation.

<!-- CreateView.vue -->
<template>
<header>
<RouterlLink :to="{ name: ’Feed’ }"> <NotInstagramLogo/>
</RouterLink>
<RouterLink :to="{ name: ’Feed’ }"> <XIcon/> </RouterLink>
</header>

<form id="newPostForm" action="" method="post">
<input type="url" name="mediaUrl" id="mediaUrl"
placeholder="Insert your media URL here..."
v-model="medialUrl" />
<p>or</p>
<select name="preloaded-image" id="preloaded-image"
v-model="mediaChoice">

<option value="">Choose one of our media files
here...</option>
<option v-for="media in preloadedMedia" :key="media"

:value="media">
{{ media }}
</option>

</select>
<textarea name="caption" id="caption" cols="30" rows="3"

placeholder="Type your caption here" v-model="caption"/>
<button type="submit" :disabled="!(caption && mediaSource)">

Post it! </button>

</form>

<hr />

<Post :userhandle="userhandle" :caption="caption" :likeCount="0"
:mediaSource="mediaSource" :hideActionIcons="true" />

</template>

Listing 2: Create Page in Vue.js (Template)

// CreateView.vue
export default {
name: "CreateView",
data() {
return {
preloadedMedia: [

"canyon.mp4", "abstract-circles.webp",
1,
userhandle: "@you",
caption: "",
mediaUrl: "",
mediaChoice: "",

};
},
computed: {
mediaSource () {
if (this.mediaUrl) return this.medialUrl;
return this.mediaChoice;
},
},

24

ot =W N =

o -1 D

10
11
12
13
14
15
16
17
18
19

20

22
23
24
25

26
27
28
29
30

Listing 3: Create Page in Vue.js (Script)

Listings [4] and [5] show the implementation of the Post component in Vue.js.
It requires seven props for the five data points of a post (see figure [3) and
two additional props for the control over the design and loading behavior of
the post’s image or video. Additionally, the mounted method loads the user
data through the ProfileService (see listing[5] line . The template of the
component uses MediaComponent twice, once for the profile picture and once for
the post image or video. The attributes for the profile picture are mainly static
because the user data is not edited through the create form. The attributes
of the post multimedia except the class, width and height are dynamic and
editable. Additionally, the projection of the post’s caption onto the [DOM]is
dynamic. Every time the caption changes, the string is split by whitespaces
and each word is projected onto a element, so it can be styled as an
hashtag if applicable. Afterwards, the list of elements is joined using
whitespaces. The purpose of this method for the projection of the caption is
only for the styling of hashtags.

<!-- Post.vue -->
<template>
<div class="post">
<RouterLink v-if="user" :to="{ name: ’Profile’, params: {
handle: userhandle } }" class="postUserInfo" >
<MediaComponent class="profilelmage"
:src="user?.profileImageSource" alt="" width="44"
height="44" />
{{ user?.username }}
</RouterLink>
<MediaComponent class="postMedia" :src="mediaSource"
ralt="caption" width="100%" height="100%"
:eagerLoading="eagerLoading" />
<div class="actionIconRow" v-if="!'hideActionIcons">
<div class="leftActionIcons">
<HeartIcon />
<CommentIcon />
<SendIcon />
</div>
<BookmarkIcon />
</div>
<p class="likeCount">{{ likeCount }} likes</p>
<p class="caption">

<span v-for="(word, i) in caption.split(’ ?’)" :key="i"
:style="word.startsWith(’#’) ? ’color: #0091E2’ : ’’">
{{ word }3}{{ " " }}

</p>

<p class="creationTime">{{ creationTimeToString 1}}</p>
</div>
</template>

Listing 4: Post in Vue.js (Template)

// Post.vue
import ProfileService from "@/services/ProfileService";

export default {
name: "Post",

25

U W N —

props: {
userhandle: String,
caption: String,
mediaSource: String,
likeCount: Number,
createdAt: Date,
hideActionIcons: Boolean,
eagerLoading: { type: Boolean, default: false I},
},
data() {
return { user: null 7};
},
mounted () {
ProfileService.getByHandle (this.userhandle).then(
(user) => (this.user = user)
)
},
computed: {
creationTimeToString () {

Listing 5: Post in Vue.js (Script)

Because the creation of such a dynamic component is an intended use case
for Angular, Next.js, Nuxt, React, Svelte and Vue.js, their implementation is
not unusual (see listings and [B8). Astro poses
as an opposite to this. Because dynamic or reactive components are not im-
plementable natively as Astro components, another framework has to be used
in Astro Islands. For this reason, other components had to be invented in ad-
dition to the components as described in figure CreateForm encapsulates
the dynamic parts of the Create Page. It is a React component with the form
and post preview. Because Astro components cannot be used in Islands, every
subcomponent used here had to be implemented with React as a duplicate to
an Astro component.

Listings [6] [7] and [§] show the implementation of this unique design in Astro.
The Create component imports and inserts the React component CreateForm
into [ATMT] snippets for the page and marks it as a [CSR] component with
client:load (see listing (7} line . From this component inwards, all
is generated on the client and purely as a React application. The CreateForm
itself contains the form and Post subcomponent. Because of this structure, the
components Post, MediaComponent, BookmarkIcon, CommentIcon, HeartIcon
and SendIcon had to be implemented as Astro components and as React com-
ponents. Figure [f] shows this updated component structure with Astro Islands.
// create.astro

export const prerender = false;
import HtmlLayout from "../Layouts/HtmlLayout.astro";

import NotInstagramLogo from
"../components/NotInstagramlLogo.astro";

import XIcon from "../components/icons/XIcon.astro";

import CreateForm from "../components/CreateForm.jsx";

import React from "react";

26

10

11
12

13

15
16
17
18
19
20

O -1 O O i W N =

= e e e
Tl W~ O o

16
17
18
19
20
21
22

23
24
25
26

27
28
29
30

31
32

33

34

const userhandle = "Qyou";

Listing 6: Create page in Astro (Frontmatter)

<!-- create.astro -->
<HtmlLayout>
<header>
 <NotlInstagramLogo />
 <XIcon />
</header>
<React .StrictMode>
<CreateForm userhandle={userhandle} client:load />
</React.StrictMode>
</HtmlLayout>

Listing 7: Create page in Astro (HTML)

// CreateForm.jsx

import { useState } from "react";

import styles from "./CreatePost.module.css";
import Post from "./Post";

const preloadedMedia = [
"canyon.mp4", "abstract-circles.webp",

1;

const CreateForm = ({ userhandle }) => {
const [caption, setCaption] = useState("");
const [mediaUrl, setmediaUrl] = useState("");
const [mediaChoice, setmediaChoice] = useState("");

function mediaSource() {
return mediaUrl || mediaChoice;

}

return (
<>
<form id={styles.newPostForm} action="" method="post">
<input type="url" name="mediaUrl" id={styles.mediaUrl}
placeholder="Insert your media URL here..."
value={mediaUrl} onChange={(event) =>
setmedialUrl (event.target.value)} />

<p>or</p>

<select name="preloaded-image" id={"preloaded-image"}
value={mediaChoice} onChange={(event) =>
setmediaChoice (event.target.value)}>
<option value="">Choose one of our media files
here...</option>
{preloadedMedia.map ((media) => (
<option key={media} value={medial}>{medial}</option>
)3
</select>
<textarea name="caption" id={styles.caption} cols="30"
rows="3" placeholder="Type your caption here"
value={caption} onChange={(event) =>
setCaption(event.target.value)}/>
<button type="submit" disabled={!(caption &&
mediaSource ())}> Post it! </button>
</form>

27

36
37
38
39
40

[}

Post Senvice
getal)
gelByUserhandiefnandie)
{ 3

ProfileList I Infolcon | Profile |

CreateForm

Profile Service
getAll)
getByUserHandie(handie)

e

InfoBlock

{

Logoheader ‘

Med \acnmg

ogo

\—»‘ Xleon }4—/
Heartlcon !
Sendicon !

Figure 6: Adapted component structure for Astro Islands (React components
are marked blue, duplicate components are white and blue)

<Post userhandle={userhandle} caption={caption}
likeCount={0} mediaSource={mediaSource ()}
hideActionIcons={true} />

)
};

export default CreateForm;

Listing 8: Create form in Astro

The MediaComponent is a presenter component for multimedia content,
namely an image or a video. It is used within the ProfileList, Profile and Post
components (see figure 2). As described in section the main use of this
component for a developer is to centralize the optimization of multimedia files
and to ensure its correct size and style. As such, it is a catchall component
for many kinds of multimedia sources. Listings [0] and [I0] show parts of its
implementation in Vue.js.
<!-- MediaComponent.vue -->

<template>
<img ref="image" class="postMedia"

v-if="mediaSource.endsWith(’webp’)" :alt="alt"
twidth="width" :height="height" :loading="eagerLoading 7
’eager’ : ’lazy’" :src="mediaSource" />

<video ref="video" class="postMedia"
v-else-if="mediaSource.endsWith(’mp4’)" :width="width"
:preload="eagerLoading 7 ’auto’ : ’metadata’" controls

controlslist="nodownload ,nofullscreen ,noremoteplayback"”
disablepictureinpicture loop muted >

28

[ClaN e

11
12

13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41

<source :src="mediaSource" type="video/mp4" />

</video>
<div v-else class="mediaError" ref="mediaError">

<p>Nothing to see yet...
Choose an image to continue!</p>
</div>

</template>

<script>//see listing below</script>

Listing 9: MediaComponent in Vue.js (Template)

// MediaComponent .vue
import { playPauseVideo } from "@/utils/autoplay.js";

export default {

name: "MediaComponent",
props: {
src: { type: String },
alt: { type: String, default: "" },

width: String,

height: String,

eagerLoading: { type: Boolean, default: false 7,
},
computed: o

mediaSource () {

if (
this.src == null ||
this.src == undefined ||
this.src.startsWith("http")
)

return this.src;
return new URL(‘/src/assets/stock-footage/${this.srcl}*,
import.meta.url)

.href;
},
},
mounted () {
const video = this.$refs.video;
if (video) playPauseVideo(video);
},

};
Listing 10: MediaComponent in Vue.js (Script)

First, the component takes five props that can be passed to it as [HTMI]
attributes (see listing line ff.). The src string contains either the file
name or [URI] to the file. The alt prop is the alternative text for an image
to simple pass to the alt attribtue of the tag, as well as the width and
height of the image or video. These props are primarily needed for optimization
of layout shifts and to optionally tell the browser which image variant is needed
from a source set on the page. Lastly, the eagerLoading prop is a boolean
indicator for whether the file need to be loaded first for images or preloaded
fully for videos.

Second, the computed property mediaSource returns the correct link to
either the image or video source based on the start of the src prop. This
allows the component to identify faulty or external source[URLf and only import
needed local multimedia files. This implementation design is unique to Vue.js
and Nuxt. Looking at the implementation in React and Next.js, the same effect
is achieved through the useState and useEffect hooks. The ngOnChanges

29

hook is used in Angular. In Svelte, the mediaSource is defined with a leading
$:, making it reactive. Because of its non-dynamic nature the native Astro
component defines mediaSource statically server-side. On the other hand, the
dynamic component uses the same implementation as the React application.

Third, every framework uses conditional rendering to project either an im-
age, a video or an error message onto the[DOM| Additionally, the Svelte compo-
nent checks another condition: external and internal images. For image source
strings starting with “http”, an[HTMT}native element is used, whereas the
Svelte-native <enhanced:img> tag is used for all other images. The remaining
frameworks use either one or the other method to insert images. Vue.js, Re-
act and Angular do not support enhanced image elements. These frameworks
only include images using the tag. In contrast, Astro, Next.js, Nuxt and
Svelte do have commponents that improve the performance of image elements.
Astro natively supports an <Image> component that outputs an tag with
optimized attributes. Next.js comes with another <Image> component that op-
timizes images with a predefined width and height and Nuxt has a <NuxtImg>
component to optimize images and define presets for its images. Svelte is the
only one of that group that does not support full[URLE to be passed to its image
component.

Fourth, the attributes of the elements are designed to optimize their
load performance, size and image quality. While no way to optimize the size and
quality of the source of simple elements is apparent, the load performance
is adapted to the usage of a <MediaComponent>. The first Post of a PostList is
always eager-loaded, whereas all other images are lazy-loaded. The size of the
bounding box of the image is also defined in order to prevent layout shifts during
or after the loading of the image. Enhanced image components are configured
to ideally optimize the size and quality of the requested image, as well as to
insert placeholder images if possible.

The <video> elements are designed to optimize the load behavior of the
browser and to change the default presentation and styling. Each video has a
defined width and height, controls and playback behavior. In order to come as
close to the application’s model, Instagram, videos should autoplay, but stay
muted. Each single behavior is a single attribute to set, but autoplaying every
video requires every video to be loaded on page load. This network load bears
a performance decrease. For this reason, only the metadata is preloaded unless
it is the first post in the PostList. To ensure the wanted autoplay feature, each
<video> element is referenced using the framework and custom code ensures
videos play when they are in the viewport and pause when they are outside of
it. This is achieved using an IntersectionObserver (MDN Mozilla, 2024al).

4.2 Tests

As described above, the implemention of tests and test configuration were the
last step in the process of project creation. As such, tests were either left “as is”
or not configured until the application could be considered “done”. The test suite
for this project can be split into two halves: Lighthouse [CLI] automation and
Playwright tests (see section . Lighthouse is used to mostly cover aggregate
metrics, while Playwright is used to export navigation and [HTMTI]event times.

To this end, a script was written to automate the execution of Lighthouse
tests and to store Lighthouse reports in a comprehensive way. Listing [L1] shows

30

O -1 O O = W N =

22
23
24
25
26

27
28
29
30
3

32
33
34

35
36
37

parts of the implementation of the testing script. It reads project configura-
tions from an external configuration file and iterates over them, executing the
tests for every framework multiple times. Listing [12| contains an excerpt of the
configuration file. Every project is built and hosted, if either a host command,
e.g. using npm run <script>, or a serve command using serve is defined in the
configuration file. While the application is hosted, a headless Google Chrome
browser window is launched and multiple lighthouse tests are preformed. The
report is generated using the [URT]as it is specified in the configuration and with
static options. These options define among other things that an [HTMI] report
is to be generated, only performance metrics are to be collected and the [HT TP
status code is to be ignored. The last option is necessary because web servers
started using serve return a 404 status code for files that do not exist in the
hosted directory. For applications that rely on index.html to be returned if a
requested resource is not available, this behavior is not desired. For example,
requesting the defined path /about results in a 404 code with the index.html
file as the response body. Withouth the option ignoreStatusCode: true, the
Lighthouse test would fail as the page is considered to be unavailable.

// testing-script/index.js

import fs from ’fs’;

import lighthouse from ’lighthouse’;

import * as chromeLauncher from ’chrome-launcher’;

import config from "./config.js"
import { exec, spawn } from ’child_process’;

import { createlogger, transports, format } from "winston"
const logger = createlLogger({...})

/1.

function dateToUriSafeString(d) {...}

function build(projectConfig) {
return new Promise((resolve, reject) => {

if (projectConfig.buildCommand) {
logger.info("Starting build...")
exec(‘${projectConfig.buildCommand}‘, { cwd:
projectConfig.projectPath, maxBuffer: 1024 * 1024 * 1024
}, (error, stdout, stderr) => {

/7
b
}
else {
logger.info("Skipping build because buildCommand was not
specified")
resolve ()
}
b))

¥

async function stopServer(hostProcess, projectConfig) {
return new Promise((resolve, reject) => exec(‘taskkill /pid
${hostProcess.pid} /f /t¢, (error, stdout, stderr) => {
//
1))
¥

31

38
39 for (let projectConfig of config.projects) {

40 logger.info(‘Testing project ${projectConfig.name}*)

41

42 // BUILD PHASE

43 await build(projectConfig)

44

45 // STARTING HOST PROCESS

46 /7

47

48 if (serverCommand) {

49 logger.info("starting server...")

50 const [command, ...options] = serverCommand.split(" ");

51 hostProcess = spawn(command, options, { cwd:
projectConfig.projectPath, shell: true })

52 }

53 else {

54 if (projectConfig.url.startsWith(’http://localhost’)) throw

new Error("Server was not properly configured. Check
prefferedServeCommand, hostCommand and/or serveCommand for
project", projectConfig.name)

55 else ("Server was not started because no command was
specified")

56 }

57

58 //

59

60 // START LIGHTHOUSE TEST

61 logger.info("Starting lighthouse tests...")

62 const url = projectConfig.url

63 const chrome = await chromeLlauncher.launch({ chromeFlags:
[’--headless’] });

64 const options = { loglevel: ’warn’, output: ’html’,
onlyCategories: [’performance’], port: chrome.port,
ignoreStatusCode: true 1;

65

66 for (const route of (projectConfig.paths || ["/"1)) {

67 //

68

69 for (let i = 0; i < config.runsPerProject; i++) {

70

71 const runnerResult = await lighthouse(url + route, options);

72

73 const { report: reportHtml, artifacts, lhr } = runnerResult;

74 const { timing, fetchTime, categories, ...rest } = lhr

75

76 fs.mkdirSync(‘${projectConfig.reportDirectory}r${route == "/"

7 "/index" : routel}‘, { recursive: true }, (err) => {
77 if (err) throw err;
78 B
79 fs.writeFileSync(‘${projectConfig.reportDirectory}${route ==
"/" ? "/index" : route}/lighthouse-report-${new
URL(url) .hostname}-${dateToUriSafeString(new
Date())}.html‘, reportHtml);

80 fs.writeFileSync(‘${projectConfig.reportDirectory}${route ==
"/" ? "/index" : route}/lighthouse-report-${new
URL(url) .hostname}-${dateToUriSafeString(new
Date())}.json¢, JSON.stringify({ artifacts, lhr }, null,
2));

8

82 /7

83 }

32

84
85
86
87
88
89
90
91
92

U= W N~

(>

[Nl NEN{

/7
}

await chrome.kill();
if (serverCommand) await stopServer (hostProcess, projectConfig)

¥

logger.info ("ALL DONE")
Listing 11: Automation script for Lighthouse tests

// testing-script/config.js
export default {
runsPerProject: 20,

preferredServeCommand: "serve",
projects: [
//
{
name: "Svelte on Vercel",

reportDirectory:
"./lighthouse -reports/ig-clone-svelte/vercel",
url: "https://ig-clone-svelte.vercel.app",

paths: ["/", "/about", "/create", "/user/@PeterPoster"]
},
//
{
name: "Svelte",
projectPath: "../ig-clone/ig-clone-svelte",
buildCommand: "npm run build",
serveCommand: "npm run preview",

reportDirectory:

"./lighthouse -reports/ig-clone-svelte/localhost",
url: "http://localhost:4173",
paths: ["/", "/about", "/create", "/user/QPeterPoster"]

Listing 12: Test configuration for Lighthouse tests

Once the test results are available, the relevant metrics are collected, stored
in a[JSON]file and the [HITMTI] report is stored as a means to debugging. After
the tests are finished and results are stored, the Google Chrome window is killed
and the webserver is stopped.

In order to evaluate and summarize the collection of tests performed using
the automation script, another script was written so that test summaries are
created. This report reader iterates over the list of [JSON]files and calculates
the average per metric, route and project configuration from the configuration
file. It makes it easier to compare the test results and interpret the performance
of the frameworks (see chapter [5)).

Similar to the test method for Lighthouse, Playwright tests can be trig-
gered using a script to unify the output files. Listing [L3| shows the implemen-
tation of this trigger script. Project directories are defined and the test com-
mand is executed in the directory with the configured environment variables.
PW_TEST_HTML_REPORT_OPEN tells Playwright to not open a report even if a test
fails, PLAYWRIGHT_HTML_REPORT defines the report directory as a directory with

33

a timestamp, so that no test results are overwritten, and PLAYWRIGHT _JSON_OUTPUT_FILE
specifies the location where a[JSON]reports shall be stored.

1 // playwright-trigger.mjs

2 import { spawn } from ’child_process’
3

4 const projects = [

5 //

6 {

7 name: "IG Clone Svelte",

8 cwd: "ig-clone-svelte"

9 1,

10 /7

11]

12

13 const testArguments = [

14 // "/.xchange\.spec\.js/"

15]

16

17 function generateUriSafeTimestamp () {
18 /7.

19 }

20

21 console.log(‘Found projects: ${projects.map(p =>
‘vg{p.name}" ‘) .join(’, ’)}°)

22
23 console.log(‘Starting tests for ${projects.lengthl}
${projects.length == 1 ? ’project’ : ’projects’}...°‘)
24
25 for (const project of projects) {
26
27 console.log(‘Starting with "${project.name}" ‘)
28
29 const now = new Date()
30 const reportDirectory =
‘playwright -report-${generateUriSafeTimestamp ()}
31
32 await new Promise(resolve => {
33
34 const testProcess = spawn("npm", ["run", "test:e2e",
...testArguments], {
35 cwd: project.cwd,
36 shell: true,
37 env: o
38 ...process.env,
39 PW_TEST_HTML_REPORT_OPEN: ’never’,
40 PLAYWRIGHT_HTML_REPORT: reportDirectory,
41 PLAYWRIGHT_JSON_OUTPUT_FILE: reportDirectory +
"/test-results.json"
42 }
43 b
44
45 /...
46 }) .then(() => {
47 console.log(‘Finished "${project.namel}"
(${projects.index0f (project) + 1}/${projects.lengthl}) ¢)
48 iy
49 %
50

51 console.log("DONE")
Listing 13: Trigger script for Playwright tests

34

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36

38
39

// ig-clone-vue/playwright.config.js
import process from ’node:process?’
import { defineConfig, devices } from ’@playwright/test’

export default defineConfig({
testDir: ’./tests’,
timeout: 60 * 1000,
expect: { timeout: 5000 },
forbidOnly: !!process.env.CI,
retries: 2,
workers: 1,
reporter: [[’html’], [’json’, { outputFile:
’playwright -report/test-results.json’ }]],
use: {
actionTimeout: 0,
baseURL: ’http://localhost:30007,
trace: ’on’,
headless: true

},

projects: [
{ name: ’Chromium’, use: {...devices[’Desktop Chrome’]} 1},
{ name: ’Firefox’, use: {...devices[’Desktop Firefox’]} },

{ name: ’Webkit’, use: {...devices[’Desktop Safari’]} },

/* Test against mobile viewports. */
{ name: ’Mobile Chrome?’, use: {...devices[’Pixel 5°]1} I},
{ name: ’Mobile Safari’, use: {...devices[’iPhone 12°]} },

/* Test against branded browsers. */
{ name: ’Microsoft Edge’, use: {channel: ’msedge’} 1},
{ name: ’Google Chrome’, use: {channel: ’chrome’} },

1,

webServer: {
command: ’vite build && serve -sd dist’,
port: 3000,
reuseExistingServer: !process.env.CI
}
B

Listing 14: Playwright configuration for Vue.js

The tests and test configuration are similar for all frameworks. Listing
shows how the test suite is configured. Timeouts are defined for all tests so that
even slowly loading pages are tested properly and retries are specified to repeat
failing tests twice. The reason for this specification is that fluctuating timings
close to the limit of failure should be tested multiple times to ensure that the
test is supposed to fail. All test executions and repetitions are configured to
run in sequence to minimize the influence of the availability of resources on the
testing machine. This is especially important because Playwright both opens
the application in a browser and runs a webserver for local tests. It is set to start
a webserver, wait for its availability and then open the application under the
specified baseURL. The webserver command, port and baseURL are different for
every framework. The test configuration also specifies a list of browsers to test
the application in. For this study, seven browsers were chosen based on the most
used browsers (StatCounter, |2024)) and their mobile versions. The browsers are
Chromium, Google Chrome, Mobile Chrome, Safari, Mobile Safari, Microsoft
Edge and Firefox.

35

U= W N =

- 3

10
11
12
13

14
15

18
19
20

2

22
23
24
25
26
27

28

The tests written for this application are threefold as they reflect the sepa-
ration of performance metrics (see section [3.4). Listings and [19| show the
test files.

First, page load times are measured using page-load.spec.js (see listing
. Every defined route is opened in a browser window, the navigation tim-
ings are extracted through a page.evaluate(<evalFunction>) method and
the timings are attached and annotated so that they can be read after the
test execution. The test for every page is that the timings loadEventEnd and
domComplete are faster than a time budget. The paths and time budget per
page configed in pages.js (see listing . To ensure a fast performance, the
time budgets are defined to be under two seconds for all pages. Because no
network requests are made in the design of the application on the About page,
the time budget was lowered to 1.5 seconds here.

// page-load.spec.js
import { test, expect } from ’Q@playwright/test’;
import routes from "./pages.js"

test.describe("Load Time", () => {
for (const route of routes) {
test (‘${route.name} loads within the page load budget‘, { tag:
[¢@${route.namel}‘, ’@pageload’] }, async ({ page },
TestInfo) => {

await page.goto(route.path)
await page.waitForLoadState ()

const timing = await measurePerformance (page)

TestInfo.attach("timing.json", { body:
JSON.stringify (timing, null, 2), contentType:
"application/json" 3})

const [{ responseStart, responseEnd,
domContentLoadedEventEnd, domComplete, loadEventEnd }] =
timing;

test.info().annotations.push({ type: ’Page Load Budget’,
description: ‘The time budget for this page was
${route.pageloadBudgetMs}ms ‘ });

/1.

expect .soft (domComplete, ‘domComplete event should happen
within ${route.pageloadBudgetlMs}
ms ‘) .toBeLessThanOrEqual (route.pageloadBudgetMs)

expect.soft (loadEventEnd, ‘loadEventEnd event should happen
within ${route.pageloadBudgetMs}
ms ‘) .toBeLessThanOrEqual (route.pageloadBudgetMs)

b
Y
b

async function measurePerformance(page) {
return await page.evaluate(() =>
performance.getEntriesByType(’navigation’));

Listing 15: Test file for page load times

// pages.js
const routes = [

36

Tt W

{ name: "Index page", path: "/", pageloadBudgetMs: 2_000 },

{ name: "About page", path: "/about", pageLoadBudgetMs: 1_500 1},

{ name: "Create page", path: "/create", pagelLoadBudgetMs: 2_000
1,

{ name: "Profile page", path: "/user/@PeterPoster",

pageloadBudgetMs: 2_000 2},
]

export default routes;

Listing 16: Test pages configuration

Second, component load times are measured with the help of dynamic-performance.spec. js.

The same routes are opened after in initialization script is injected into the
browser window. Listings [I7] and [I§] show parts of the test definition and the
injected script. The latter waits for a specific element to appear in the [DOM]
that does not appear in the [HTML] skeleton, if it exists. Afterwards, it ini-
tializes a MutationObserver on that element. Each observation is stored with
an xpath, id and the last mutation time. The mutation time is overwritten
every time so that only the latest update is recorded and the list of times is
published as a member of the window object. Recorded mutations are added
or removed children, addition or removal of the element itself and a changed
attribute. Because the time of mutation is only measured as the time difference
to the addition of the application-specific root element, the recorded times are
an estimation of the execution time between framework initialization and the
latest mutation.

The test script waits for ten seconds after the injection of the recording script
and then evaluates the recorded timings. The update times are also attached to
the test as a[JSON[file so that they can be traced after the test context no longer
exists. The test to pass for the page is that the latest[DOM] mutation happens
within the page’s load time budget. In order to trace the failing components
more easily, screenshots are token of each slow [HTMI] element. Additionally,
a screenshot of the whole page is taken in which slow elements are colored.
Every screenshot is then attached to the test. This method ensures that slow
components can be identified visually even if xpath and id of the element change
between component lifecycles or application builds.

// dynamic-performance.spec.js

import { test, expect } from ’@playwright/test’;
import routes from "./pages"

test.describe("Dynamic load time", () => {
for (const route of routes) {

test (‘Dynamic components on ${route.name} load within the load
budget ¢, { tag: [‘@${route.name}‘, ’Q@componentload’] 7},
async ({ page }, TestInfo) => {
// Inject performance measurement script into the page
await page.addInitScript({ path: ’./tests/performance.js’ })

// Go to the measured page
await page.goto(route.path)
await page.waitForLoadState(’domcontentloaded’)

// Start evaluation

const latestUpdateComponents = await new Promise(resolve =>
setTimeout (resolve, 10_000)).then(() => {

37

19
20
21
22
23
24
25

26

27
28
29
30
31
32
33
34

35
36
37
38
39
40

41
42
43
44
45
46
47

64
65
66
67

// Return the sorted load times
return page.evaluate(() => {
if (!window.dynamic_component_performance) return null

// Sort the components by their latest dom update time
const sortedEntries =
Object.entries(window.dynamic_component_performance)
.map (([key, valuel]) => { return { id: key, ...value 3}
b
.sort((a, b) => a.lastUpdated - b.lastUpdated)

return sortedEntries
»
B

// Attach the measurements in JSON format

TestInfo.attach("update-times.json", { body:
JSON.stringify(latestUpdateComponents, null, 2),
contentType: "application/json" })

latestUpdateComponents.forEach(comp => {
const latestUpdateTime = comp.lastUpdated

// Assert the latest update occurs in time
return expect.soft(latestUpdateTime, ‘Component with
identifier ${comp.id} should load within
${route.pagelLoadBudgetMs}
ms ‘) .toBeLessThan(route.pageloadBudgetMs)
b

// Create screenshots of slow components
const componentScreenshots = await Promise.all(
latestUpdateComponents .map((el) => {
if (el.lastUpdated > route.pageloadBudgetMs) {
return
page.locator(el.id).screenshot () .then(screenshot
=> [el, screenshot])
}
}).filter(i => 1)

// Capture a screenshot of the whole page with highlighted
slow components
if (latestUpdateComponents.some(comp => comp.lastUpdated >
route.pageloadBudgetMs)){
// Hightlight slow components in HTML
await page.evaluateHandle(([latestUpdateComponents]) => {
/] ...
}, [latestUpdateComponents.filter(comp =>
comp.lastUpdated >= route.pageloadBudgetMs)])

// Create the screenshot
const screenshot = await page.screenshot({fullPage: truel})

// Attach the screenshot to the test
await TestInfo.attach("fullpage_screenshot.png", {body:
screenshot, contentType: ’image/png’})
}

// Attach the screenshots of the slow components to the test
await Promise.all(

38

68 componentScreenshots.map(([el, screenshot]) => {

69 return TestInfo.attach(
‘${el.id}-${el.lastUpdated}ms.png‘, {body:
screenshot, contentType: ’image/png’})

70 b
71)
72 b
73
74 }
(G)
Listing 17: Test file for component load times
// performance.js
let loadTimes = {}
let startTime = Date.now()

Ot W N~

function observe(targetNode) {

6 // Options for the observer (which mutations to observe)

7 const config = { attributes: true, childlist: true, subtree:
true };

8

9 // Callback function to execute when mutations are observed

10 const callback = (mutationList, observer) => {

11 for (const mutation of mutationList) {

12

13 if (mutation.type === "childList") {

14 const targetIld = getId(mutation.target)

15

16 const skipAttribute =

17 mutation.target.attributes.skipperformance?.value ||

18 mutation.target.attributes.skipPerformance?.value

19

20 if (!(skipAttribute == true || skipAttribute == ’true’)) {

21

22 if (mutation.addedNodes.length > 0) {

23 let addedElements =
Array.from(mutation.addedNodes) .map(el =>
el.nodeName !== "#comment" && el.nodeName !==
"#text" 7 getXPath(el) : el)

24 if (addedElements.length === 1) addedElements =
addedElements [0]

25

26 if (Array.from(mutation.addedNodes)

27)y Ao

28 loadTimes [targetId] = { ...loadTimes[targetId],

lastUpdated: Date.now() - startTime, xpath:
loadTimes [targetId]?.xpath ||
getXPath(mutation.target) 3}

29

30 Array.from(mutation.addedNodes).forEach(node => {

31 try {

32 const nodeld = getId(node)

33 loadTimes [nodeId] = { ...loadTimes [nodelId],
lastUpdated: Date.now() - startTime, xpath:
loadTimes [nodeId]?.xpath || getXPath(node)}

34 } catch (e) {

35 console.warn(e)

36 }

37 b

38 ¥

39 }

40

39

41 else if (mutation.removedNodes.length > 0) {

42 let removedElements =
Array.from(mutation.removedNodes) .map(el =>
el.nodeName !== "#comment" && el.nodelName !==
"#text" ? getXPath(el) : el)

43 if (removedElements.length === 1) removedElements =
removedElements [0]

44

45 if (Array.from(mutation.removedNodes)

46) {

47 loadTimes [targetId] = { ...loadTimes[targetId],
lastUpdated: Date.now() - startTime, xpath:
loadTimes [targetId]?.xpath ||
getXPath(mutation.target) 3}

48

49 Array.from(mutation.removedNodes).forEach(node => {

50 try {

51 const nodeld = getId(node)

52 loadTimes [nodeId] = { ...loadTimes[nodelId],

lastUpdated: Date.now() - startTime, xpath:
loadTimes [nodeId]?.xpath || getXPath(node) 3}

53 } catch (e) {}

54 b

55 }

56 }

57

58 }

59

60 } else if (mutation.type === "attributes") {

61 console.log(‘The ${mutation.attributeName} attribute was

modified.‘, mutation);

62

63 const targetld = getId(mutation.target)

64

65 const skipAttribute =

66 mutation.target.attributes.skipperformance?.value ||

67 mutation.target.attributes.skipPerformance?.value

68

69 if (!'(skipAttribute == true || skipAttribute == ’true’)) {

70 loadTimes [targetId] = { ...loadTimes[targetId],

lastUpdated: Date.now() - startTime, xpath:
loadTimes [targetId]?.xpath ||
getXPath(mutation.target) }

71 }

72

73 }

74 }

75

76 window.dynamic_component_performance = loadTimes

77 };

78

79 // Create an observer instance linked to the callback function

80 const observer = new MutationObserver(callback);

81

82 // Start observing the target node for configured mutations

83 observer.observe(targetNode, config);

84}

85

86 function getId(element) {

87 /7

88 ¥

89

40

90 function reset() {

91 loadTimes = {}

92 startTime = Date.now()

93 3}

94

95 /*x*

96 * Get absolute xPath position from dom element

97 * @param {Element} element element to get position

98 * Q@returns {String} xPath string

99 */

100 function getXPath(element) {

101 /7

102 %

103

104 let interval;

105

106 function initObservation() {

107 // The id of the targetNode has to be adapted to the framework
or application

108 const targetNode = document.getElementById("app")

109 if (targetNode) {

110 observe (targetNode)

111 if (interval) clearInterval(interval)

112 }

113 %

114

115 interval = setInterval(initObservation, 100)

116
117 // initialize window.dynamic_component_performance
118 window.dynamic_component_performance = loadTimes

Listing 18: Injected mutation recorder script

Third, tests for the component update times are specified in state-change.spec.js
(see listing . In this test specification two other time budgets are defined.
The first update to the [DOM] and the slowest update to the DOM] are tested.
The idea behind these time budgets is that users may perceive the “reaction
time” as the time frame in which their action had any effect or the time frame
in which the effect of their actions finishes. To this end, user actions are de-
fined in combination with a route to perform these actions on. For this work,
four actions are defined on the Create page: The changing of the caption, the
selection of an image, the insertion of a media source and the creation of a new
post, which is a combination of caption change and media selection.

In order to evaluate the reaction speed to those user actions, the same muta-
tion recording script is inserted as for component load times. The page is then
opened and the recorded mutation timings are reset. Afterwards, the user ac-
tion is performaned and the new mutation times are extracted, attached to the
test and evaluated. The tests to pass are then that the earliest mutation timing
is within 100 ms of the user input and the latest mutation timing is within 500
ms of the user input. Again, screenshots are taken of all [HTMI] elements that
were recorded as mutated and do not pass the tests. These screenshots are also
attached to the test in order to debug applications that do no pass the tests.

1 // state-change.spec.js

2 import { test, expect } from ’Q@playwright/test’;
3

4 const minReactionTime = 100;

5 const maxUpdateTime = 500;

41

00 ~3

15
16
L7
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35

46
47
48

49

const actions = [
{
route: ’/create’,
inputlActions: [
{
name: ’Caption Change’,
action: async (page) => {
const captionInputField = page.getByPlaceholder (’Type
your caption here?’)
return captionInputField.fill(’Lorem ipsum ...?’)

}
3,
{

name: ’Media Selection?,
action: async (page) => {
const mediaSelector = page.locator(’#preloaded-image’)
return mediaSelector.selectOption(’moon.webp?)
by
3,
{
name: ’Media Source Insert?’,
action: async (page) => {
const captionInputField = page.getByPlaceholder(’Insert
your media URL here...?)
return captionInputField.fill(‘${new URL(await
page.url()) .origin}/abstract-circles.webp ‘)

name: ’Post Creation’,
action: async (page) => {
const mediaSelector = page.locator(’#preloaded-image’)
const captionInputField = page.getByPlaceholder(’Type
your caption here?’)
awvait mediaSelector.selectOption(’moon.webp’)
return captionInputField.fill(’Lorem ipsum ...?’)

for (const actionGroup of actions) {
for (const inputAction of actionGroup.inputActions) {

test.describe(‘State Change DOM Update: ${inputhction.namel}®,
{ tag: [‘@${inputAction.name.replace(/\s/g, *?)}°,
>0stateChange’] }, () => {
let page;
let domUpdates = null;

test.beforeAll(async ({ browser }) => {
page = await browser.newPage();

await page.addInitScript({path: ’./tests/performance.js’})

await page.goto(actionGroup.route)
await page.waitForLoadState(’domcontentloaded’)

await new Promise(resolve => setTimeout (resolve, 3_000))
await page.evaluate(() => {reset()})

await inputAction.action(page)

42

63
64
65
66
67
68
69

70

71
72
73
74
75
76
7
78
79
80

81
82
83
84
85

86

87

88
89

90

91
92

93
94
95
96
97
98

99
100
101
102

await new Promise(resolve => setTimeout (resolve, 5_000))
domUpdates = await page.evaluate(() => {
if ('window.dynamic_component_performance) return null

// Sort the components by their latest dom update time
const sortedEntries =
Object.entries(window.dynamic_component_performance)
.map (([key, valuel]) => { return { id: key, ...value 3}
b
.sort((a, b) => a.lastUpdated - b.lastUpdated)
return sortedEntries
b))
B

test.afterAll(async () => {
await page.close();

B

test(‘User input triggers first update within
${minReactionTime} ms‘, { tag: [’@minimalReactionTime’]
}, async ({ }, TestInfo) => {
expect (domUpdates) .not.toBeNull ()
expect (domUpdates) .not.toEqual ([])
const minReactionComp = domUpdates [0]

await TestInfo.attach(‘domUpdates${TestInfo.retry > 0 ?
¢ _retry_${TestInfo.retry}‘ : ’’}.json‘, { body:
JSON.stringify (domUpdates, null, 2), contentType:
"application/json" })

await test.info().annotations.push({ type: ‘Fastest Update
${TestInfo.retry > 0 7 ‘(retry #${TestInfo.retryl})*
’?}¢, description: ‘Component with id
${minReactionComp.id} loaded
${minReactionComp.lastUpdated}ms after user input
(xPath: ${minReactionComp.xpathl})‘ });

expect.soft(minReactionComp.lastUpdated, ‘Fastest updated
component with identifier ${minReactionComp.id} should
update within ${minReactionTime}
ms ‘) .toBelLessThanOrEqual (minReactionTime)

if (domUpdates.some(comp => comp.lastUpdated >=
minReactionTime))
avait test.info().annotations.push({ type: ’Himnt’,
description: ‘Screenshots below show slow updating
components ¢ });

// take screenshots of all elements referenced in
domUpdates
await Promise.all(
//
)
»

test (‘DOM updates triggered by state change finish within

${maxUpdateTime} ms‘, { tag: [’Q@maximalReactionTime’] 1},
async ({ }, TestInfo) => {

expect (domUpdates) .not.toBeNull ()

expect (domUpdates) .not.toEqual ([])

const maxUpdateComp = domUpdates.at(-1)

await TestInfo.attach("domUpdates.json", { body:

JSON.stringify(domUpdates, null, 2), contentType:

43

103

104
105
106

107
108
109

110

111
112

113
114
115
116
117
118
119

"application/json" })

await test.info().annotations.push({ type: ’Slowest
Update?’, description: ‘Component with id
${maxUpdateComp.id} loaded
${maxUpdateComp.lastUpdated}tms after user input
(xPath: ${maxUpdateComp.xpath})* });

domUpdates.forEach(comp => {
expect.soft(comp.lastUpdated, ‘Component with identifier
${comp.id} should finish updates within
${maxUpdateTime}
ms ‘) .toBeLessThanOrEqual (maxUpdateTime)
B

if (domUpdates.some(comp => comp.lastUpdated >=
maxUpdateTime))
await test.info().annotations.push({ type: ’Hint’,
description: ‘Screenshots below show slow updating
components ¢ });

// take screenshots of all elements referenced in
domUpdates
await Promise.all(
//
)
B
B
}

Listing 19: Test file for component update times

5 Evaluation

5.1 Page Load Times
5.2 Component Load Times

5.3 Component Update Times

6 Conclusion

7 Summary

44

1
2

3

A Listings

! About pagein Vue.s|
Create Page in Vue.js (Template)|
Create Page in Vue.js (Script)|.
Post in Vue.js (Template)]
Post in Vue.js (Script)| Lo oL
Create page in Astro (Frontmatter).
Create page in Astro (HTML)|.

NS E N

9 MediaComponent in Vue.js (Template)
10 MediaComponent in Vue.js (Script)|.
[IT Automation script for Lighthouse tests|
12 'lest configuration for Lighthouse tests|
13 1gger script for Playwright tests|
14 Playwright configuration for Vue.gs|
115 Test file for page load times| 00,
116 Test pages configuration|
117 'lest file for component load times|
18 Injected mutation recorder script| L.
19 est file for component update times| o000 L.
20 MediaComponent in Angular (Template)|.
21 MediaComponent in Angular (Module)|.
22 MediaComponent in pure Astro (Frontmatter & Script)|
23 MediaComponent in pure Astro (Template)|
2 ediaComponent Astro Island wit eact|.
25 MediaComponent in Next.js|
26 MediaComponent in Nuxt (Template)
27 MediaComponent in NUxt (SCIIPt)| « - « « v v v v oo ve e et .
28 MediaComponent in React|
EQ MediaComponent in Svelte (Script)|.
30 MediaComponent in Svelte (Template)|
31 Create page in Angular (Template)|
32 Create page in Angular (Module)|
@ Create page in Next.gs|
34 Create page in Nuxt (Template)]
E&S Create page in Nuxt (Script)]

37 Create in Svelte (Script)| Lo oL
38 Create in Svelte (Template)|

<!-- media-component.component.html -->

<img class="postMedia" *nglf="mediaSource &&
mediaSource.endsWith(’webp’); else videoMedia"
[ngSrcl="mediaSource" [alt]l="alt"
[width]="width?.endsWith(’%’) 7 600 : width" [height]l="height
Il (width?.endsWith(’%?) 7 600 : width)" [id]l="id"
[class]="class" [sizes]="width!" [priorityl="priority" />

<ng-template #videoMedia>

45

4 <video #video class="postlMedia" *nglf="mediaSource &&
mediaSource.endsWith(’mp4’); else mediaError"
[attr.width]="width" controls
controlslist="nodownload ,nofullscreen ,noremoteplayback"”
disablepictureinpicture loop [muted]="true"
preload="metadata" >

5 <source [src]l="mediaSource" type="video/mp4" />

6 </video>

7 </ng-template>

8 <ng-template #mediaError>

9 <div class="mediaError">

10 <p>Nothing to see yet...
Choose an image to continue!</p>
11 </div>

12 </ng-template>

Listing 20: MediaComponent in Angular (Template)

// media-component.component.ts

2 import { NgIf, NgOptimizedImage } from ’Qangular/common’;
3 import { Component, ElementRef, Input, ViewChild } from
’@angular/core’;

> =

4 import { playPauseVideo } from "../../../utils/autoplay";
5

6 @Component ({

7 selector: ’app-media-component?’,

8 standalone: true,

9 imports: [NgIf, NgOptimizedImage],

10 templateUrl: ’./media-component.component.html’,

11 styleUrl: ’./media-component.component.css?’,

2 B

13 export class MediaComponentComponent {

14 Q@Input () src!: string;

15 @Input () alt: string = "";

16 Q@Input () width?: string;

17 @Input () height?: string;

18 Q@Input () id: string = "";

19 @Input () class: string = "";

20 @Input () priority: Boolean = false;

21

22 @ViewChild(’video’) video?: ElementRef <HTMLVideoElement >;
23

24 mediaSource: string = "";

25

26 constructor () { }

27

28 nghAfterViewInit () {

29 if (this.video) playPauseVideo(this.video.nativeElement)
30 }

31

32 ngOnChanges () : void {

33 if (

34 this.src == null ||

35 this.src == undefined ||

36 this.src.startsWith("http")

37)

38 this.mediaSource = this.src;

39

40 else this.mediaSource = ‘assets/stock-footage/${this.srcl}*
41 +

42

43}

Listing 21: MediaComponent in Angular (Module)

46

DT W N~

0 -~

25
26
27
28

29
30
31
32

33

35
36
37

38
39
40
41
42
43
44
45
46
47
48

// MediaComponent.astro

import { Image } from "astro:assets";
import styles from "./MediaComponent.module.css";

const { src, alt, width, height, className, id, priority = false,
..rest } = Astro.props;

let mediaSource = "";

const mediaFiles = await import.meta.glob(
"/src/assets/stock-footage/*.{webp ,mp4}"
)
const media = Object.fromEntries(
Object.entries(mediaFiles) .map(([key, value]) => [
key.split("/") [key.split("/").length - 1],
value,
D
)
if (src?.startsWith("http")) mediaSource = src;
else mediaSource = (await medialsrc]()).default;
<script>
import { playPauseVideo } from "../utils/autoplay";

playPauseVideo () ;
</script>

Listing 22: MediaComponent in pure Astro (Frontmatter & Script)

// MediaComponent.astro

{
mediaSource && src?.endsWith("webp") && (
<Image src={mediaSourcel} alt="" width={width} height={height}
class={[className, styles.postMedial.join(" ")} id={id}
loading={priority ? "eager" : "lazy"} {...rest} />
)
¥
{

mediaSource && src.endsWith("mp4") && (
<video class={[className, styles.postMedial.join(" ")} id={id}
width={width} preload="metadata" controls
controlslist="nodownload ,nofullscreen,noremoteplayback"
disable-picture-in-picture loop muted >
<source src={mediaSource} type="video/mp4" />
</video>

!(mediaSource && src?.endsWith("webp")) &&
!'(mediaSource && src.endsWith("mp4")) && (
<div className={styles.mediaError}

style={{
minHeight: height 7 height + "px" : "300px",
maxWidth: width ? width + "px" : null,
overflow: "hidden",
33
>
<p>

Nothing to see yet...

47

Ut gr Ot Ut O
O 0o~ O Ut

Gtk W N =

[=3)

16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
3

32

33

35
36

37
38
39
40
41
42
43

45

Choose an image to continue!
</p>
</div>

Listing 23: MediaComponent in pure Astro (Template)

// MediaComponent. jsx

import { createRef, useEffect, useState } from "react";
import styles from "./MediaComponent.module.css";
import { playPauseVideo } from "../utils/autoplay";

const mediaFiles =
import.meta.glob("/src/assets/stock-footage/*.{webp,mp4l}");
const media = Object.fromEntries(
Object.entries(mediaFiles) .map (([key, valuel) => [
key.split ("/") [key.split("/").length - 1],
value ,
n
)

const MediaComponent = (props) => {
const { src, alt, width, height, className, id, priority =
false, ...rest } = props;
const [mediaSource, setMediaSource] = useState("");
const videoRef = createRef ();

useEffect (() => {
if (videoRef.current) playPauseVideo(videoRef.current);

if (src?.startsWith("http")) setMediaSource(src);
else if (src && medial[src])
medialsrc]().then((mediaFile) => {
if (src.endsWith("webp"))
setMediaSource (mediaFile.default.src);
else setMediaSource(mediaFile.default);
)

}, [src, mediaSource, videoRef]);

if (mediaSource && src?.endsWith("webp"))
return (
<img key={src} src={mediaSourcel} alt={alt} width={width}
height={height} className={[className,
styles.postMedial.join(" ")} id={id} loading={priority
? "eager" : "lazy"} {...restl} />
)
else if (mediaSource && src.endsWith("mp4"))
return (
<video ref={videoRefl} key={mediaSource}
className={[className, styles.postMedial.join(" ")}
id={id} width={width} preload="metadata" controls
controlsList="nodownload ,nofullscreen ,noremoteplayback"”
disablePictureInPicture loop muted >
<source src={mediaSource} type="video/mp4" />
</video>
)
else
return (
<div className={styles.mediaError}

style={{
minHeight: height ? height + "px" : "300px",
maxWidth: width ? width + "px" : null,

48

46 overflow: "hidden",

47 3

48 >

49 <p>

50 Nothing to see yet...

51 Choose an image to continue!
52 </p>

53 </div>

54);

55 T

56

57 export default MediaComponent;

Listing 24: MediaComponent Astro Island with React

1 // MediaComponent.js

2 import { createRef, useEffect, useState } from "react";

3 import styles from "./MediaComponent.module.css"

| import Image from "next/image";

5 import { playPauseVideo } from "@/utils/autoplay";

6

7 const MediaComponent = ({ src, alt, width, height, className, id,
priority = false }) => {

8 let [mediaSource, setMediaSource] = useState("")

9 let videoRef = createRef ()

10

11 useEffect (() => {

12 if (videoRef.current) playPauseVideo(videoRef.current)

13 try {

14 if (src.startsWith(’http’)) setMediaSource(src)

15 else

setMediaSource (require(‘@/assets/stock-footage/${src} ‘) .default)
16 } catch (error) {

17 setMediaSource ("")

18 }

19 }, [videoRef, srcl)

20

21

22 if (

23 mediaSource &&

24 (

25 (mediaSource.src && mediaSource.src.endsWith(’>jpg?)) ||

26 (src.startsWith(’http’) && src.endsWith(’jpg’))

27)

28) return (

29 <div style={{ position: "relative", aspectRatio: 1, width:
width == "100%" 7 width : ‘${widthl}px‘, overflow: "hidden"
}} id={id} className={[className, styles.postMedial.join("
I|)}>

30 <Image priority={priority}

placeholder={src.startsWith(’http’) ? "empty" : "blur"}

quality={50} src={mediaSourcel} alt={alt}
width={width.endsWith("%") ? 600 : width} height={height
|l (width.endsWith("%") ? 600 : width)} />

31 </div>

32)

33 else if (mediaSource && mediaSource.endsWith(’mp4’)) return (

34 <video ref={videoRef} key={mediaSource} className={[className,

styles.postMedial.join(" ")} id={id} width={width}
preload="metadata" controls
controlsList="nodownload ,nofullscreen,noremoteplayback"
disablePictureInPicture loop muted >

35 <source src={mediaSourcel} type="video/mp4" />

49

36
37
38
39
40

41
42
43
44

[\

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37

</video>
)
else return (
<div className={styles.mediaError}>
<p>Nothing to see yet...
Choose an image to
continue!</p>
</div>)
}

export default MediaComponent

Listing 25: MediaComponent in Next.js

<!-- MediaComponent.vue -->
<template>
<NuxtImg class="postMedia" v-if="mediaSource?.endsWith(’jpg?’)"
:src="mediaSource" :alt="alt" :preset="preset"
:loading="priority 7 ’eager’ : ’lazy’" :preload="priority"
twidth="$config.public.image_presets[preset].modifiers.width"
theight="$config.public.image_presets[preset].modifiers.height"/>
<video ref="video" class="postMedia"
v-else-if="mediaSource?.endsWith(’mp4°’)" :width="width"
preload="metadata" controls
controlslist="nodownload ,nofullscreen ,noremoteplayback"”
disablepictureinpicture loop muted >
<source :src="mediaSource" type="video/mp4" />

</video>
<div v-else class="mediaError">

<p>Nothing to see yet...
Choose an image to continue!</p>
</div>

</template>

<script>//see listing below</script>

Listing 26: MediaComponent in Nuxt (Template)

// MediaComponent.vue
const glob = import.meta.glob(""/assets/stock-footage/*.mp4", {
eager: true 1});
const media = Object.fromEntries(
Object.entries(glob) .map (([key, valuel]) => [
key.split("/") [key.split("/").length - 1],
value.default,

D
)
export default {
name: "MediaComponent",
props: {
src: { type: String },
alt: { type: String, default: "" },

width: String,
height: String,
preset: String,
priority: { type: Boolean, default: false },
},
computed: {
mediaSource () {
if (this.src.endsWith(".mp4")) return medial[this.src];
return this.src;
},
},

50

38
39
40

42

D OU s W N

14
15
16
L7
18

20
21

22
23
24

26
27
28
29

30

32
33
34

=W N =

mounted () {

const video = this.$refs.video;
if (video) playPauseVideo(video);

},
};

Listing 27: MediaComponent in Nuxt (Script)

// MediaComponent.js
import { createRef, useEffect,

useState } from "react";

import styles from "./MediaComponent.module.css"

import { playPauseVideo } from

"src/utils/autoplay";

const MediaComponent = ({ src, alt, width, height, className, id,
priority = false }) => {
let [mediaSource, setMediaSource] = useState("")
const videoRef = createRef ()

useEffect (() => {

if (videoRef.current) playPauseVideo(videoRef.current)

try {

setMediaSource (src.startsWith(’http’) ? src
require(‘src/assets/stock-footage/${src}))

} catch (error) {
setMediaSource ("")

}

}, [src, mediaSource, videoRef])

if (mediaSource.endsWith(’webp?’)) return (

<img loading={priority ? "eager"

alt={alt} width={width} height={height}

className={[className,
id={id} />
)

styles.postMedial. join ("

else if (mediaSource.endsWith(’mp4°’)) return (
<video ref={videoRef} className={[className,

styles.postMedial.join ("

preload="metadata" controls

controlsList="nodownload ,nofullscreen ,noremoteplayback"”

disablePictureInPicture loop muted >
<source src={mediaSource} type="video/mp4" />

</video>
)

else return (

<div className={styles.mediaError} styles={{ height:
height + ’px’ : ’300px’), width:

width : width + "px" }}>

<p>Nothing to see yet...
Choose an image to

continue!</p>
</div>

}

export default MediaComponent

Listing 28: MediaComponent in React

// MediaComponent.svelte

import { onMount } from ’svelte’;

import { playPauseVideo } from

’$lib/utils/autoplay’

51

"lazy"} src={mediaSource}

||)}

")} id={id} width={width}

(height 7

width.endsWith ("%") 7

11
12
13
L5
16
17
18
19
20
21
22
23

24
25
26

30
3
32

33

34

35
36
37
38

39
40
41
42
43
44
45

const images = import.meta.glob(’$lib/assets/stock-footage/*’, {
eager: true,
query: { enhanced: true, quality: 50, w: 600 }
b
const media = Object.fromEntries(
Object.entries (images) .map (([key, valuel]) =>
[key.split(’/?) [key.split(’/’).length - 1], valuel)

)
export let mediaSource: string = ’7;
$: mediaSource =
$$props.src == null ||
$$props.src == undefined ||
$$props.src == 2’ ||

$$props.src.startsWith(’http’)
? $$props.src
media[$$props.srcl.default;
export let video: HTMLVideoElement | undefined = undefined;
onMount (() => {
if (video) playPauseVideo(video);
b

Listing 29: MediaComponent in Svelte (Script)

// MediaComponent.svelte
{#if $$props?.src?.endsWith(’jpg’)}
{#if $$props?.src?.startsWith(’http’)}
<img id={$$props.id} class="postMedia {$$props.class || *?}"
alt={$$props.alt} src={mediaSource}
loading={$$props.eagerlLoading ? ’eager’ : ’lazy’}
style:width={$$props.width ? $$props.width.endsWith(?%’) ?
$$props.width : $$props.width + ’px’ : undefined}
style:height={$$props.height ? $$props.height.endsWith(’%’)
? $$props.height : $$props.height + ’px’ : $$props.width
? $$props.width + ’px’ : undefined}
/>
{:else}
<enhanced:img id={$$props.id} class="postMedia {$$props.class
Il 22} alt={$$props.alt} src={mediaSource}
loading={$$props.eagerloading ? ’eager’ : ’lazy’}
style:width={$$props.width ? $$props.width.endsWith(’%’) 7
$$props.width : $$props.width + ’px’ : undefined}
style:height={$$props.height ? $$props.height.endsWith(’%’)
? $$props.height : $$props.height + ’px’ : $$props.width
? $$props.width + ’px’ : undefined}
/>
{/if}
{:else if $$props?.src?.endsWith(’mp4°’)}
<video class="postMedia" width={$$props.width} controls
controlslist="nodownload ,nofullscreen ,noremoteplayback"”
disablepictureinpicture loop muted
preload={$$props.ecagerlLoading ? ’auto’ : ’metadata’}
bind:this={video}>
<source src={mediaSource} type="video/mp4" />
</video>
{:else}
<div class="mediaError">
<p>Nothing to see yet...
Choose an image to continue!</p>
</div>
{/if}

Listing 30: MediaComponent in Svelte (Template)

52

13
14

15
16
17
18
19
20

21
22
23
24
25
26
27
28

B W N e

ot

14
15
16
17
18
19
20
21
22
23
24

<!-- create.component.html -->
<header>
<a [routerLink]="[’/’]" routerlLinkActive="router-link-active">
<app-not-instagram-logo />

<a [routerLink]="[’/’]" routerlLinkActive="router-link-active">
<app-xicon />

</header>

<form id="newPostForm" action="" method="post">
<input [(ngModel)l="mediaUrl" type="url" name="mediaUrl"
id="mediaUrl" placeholder="Insert your media URL here..." />

<p>or</p>
<select name="preloaded-image" id="preloaded-image"
[(ngModel)]="mediaChoice">
<option value="">Choose one of our media files here...</option>
<option *ngFor="let media of preloadedMedia" [value]="media">
 {{ media }}
</option>
</select>
<textarea [(ngModel)]="caption" name="caption" id="caption"
cols="30" rows="3" placeholder="Type your caption here" />
<button type="submit" [disabled]="!(caption && mediaSource())">
Post it!
</button>
</form>

<hr />

<app-post [userhandle]="userhandle" [caption]="caption"
[likeCount]="0" [mediaSource]l="mediaUrl || mediaChoice"
[hideActionIcons]="true" />

Listing 31: Create page in Angular (Template)

// create.component.ts

import { Component } from ’Qangular/core’;

import { RouterLink } from ’@angular/router’;

import { NotInstagramlLogoComponent 1} from
’../components/not-instagram-logo/not-instagram-logo.component’;

import { XIconComponent } from
’>../components/icons/xicon/xicon.component’;

import { PostComponent } from ’../components/post/post.component’;

import { NgFor } from ’@angular/common’;

import { FormsModule } from ’@angular/forms’;

Q@Component ({
selector: ’app-create’,
standalone: true,
imports: [RouterLink, NotInstagramLogoComponent, XIconComponent,
PostComponent , NgFor, FormsModule],
templateUrl: ’./create.component.html’,
styleUrl: ’./create.component.css’

b

export class CreateComponent {
preloadedMedia: string[] = [
"canyon.mp4", "abstract-circles.webp",
]
userhandle: string = "@Qyou"
caption: string = ""
mediaUrl: string = ""

53

25
26
27
28
29
30
31

0~ D T W N

16

26

40
41

42

43
44
45
46

mediaChoice: string = ""

mediaSource (): string {
if (this.mediaUrl) return this.mediaUrl;
return this.mediaChoice;
}
¥

Listing 32: Create page in Angular (Module)

// create/page.tsx
"use client";

import Link from "next/link";

import styles from "./create.module.css";

import NotInstagramlLogo from "@/components/NotInstagramLogo";
import Post from "@/components/Post";

import XIcon from "@/components/icons/XIcon";

import { useEffect, useState } from "react";

const preloadedMedia = [
"canyon.mp4", "abstract-circles.webp",
1
const userhandle = "Qyou";
const CreatePost = () => {
const [caption, setCaption] = useState("");
const [mediaUrl, setmediaUrl] = useState("");
const [mediaChoice, setmediaChoice] = useState("");
const [mediaSource, setMediaSource] = useState(mediaChoice);

useEffect (() => {
setMediaSource (mediaUrl || mediaChoice);
}, [mediaUrl, mediaChoice]);

return (
<>
<header className={styles.createHeader}>
<Link href="/">
<NotInstagramLogo />
</Link>
<Link href="/">
<XIcon />
</Link>
</header>

<form id={styles.newPostForm} action="" method="post">
<input type="url" name="mediaUrl" id={styles.mediaUrl}
placeholder="Insert your media URL here..."
value={mediaUrl} onChange={(event) =>
setmediaUrl(event.target.value)} />
<p>or</p>
<select name="preloaded-image" id="preloaded-image"
value={mediaChoice} onChange={(event) =>
setmediaChoice(event.target.value)} >
<option value="">Choose one of our media files
here...</option>
{preloadedMedia.map ((media) => (
<option key={media} value={medial}>{medial}</option>
3
</select>

54

47

T W N~

14
15

16

18
19
20
21

22
23
24
25
26
27
28
29

30

<textarea name="caption" id={styles.caption} cols={30}
rows={3} placeholder="Type your caption here"
value={caption} onChange={(event) =>
setCaption(event.target.value)} />

<button type="submit" disabled={!(caption && mediaSource)l}>

Post it!

</button>
</form>
<hr />

<Post userhandle={userhandle} caption={caption}
likeCount={0} mediaSource={mediaSource}
hideActionIcons={true} />

)
};

export default CreatePost;

Listing 33: Create page in Next.js

<!-- create.vue -->
<template>
<header>
<NuxtLink :to="{ name: ’index’ }">
<NotInstagramLogo />
</NuxtLink>
<NuxtLink :to="{ name: ’index’ }">
<XIcon />
</NuxtLink>
</header>

<form id="newPostForm" action="" method="post">
<input type="url" name="mediaUrl" id="medialUrl"
placeholder="Insert your media URL here..."
v-model="medialUrl" />
<p>or</p>
<select name="preloaded-image" id="preloaded-image"
v-model="mediaChoice">

<option value="">Choose one of our media files
here...</option>
<option v-for="media in preloadedMedia" :key="media"
:value="media">
{{ media }}

</option>
</select>
<textarea name="caption" id="caption" cols="30" rows="3"
placeholder="Type your caption here" v-model="caption" />

<button type="submit" :disabled="!(caption && mediaSource)">
Post it!
</button>
</form>
<hr />
<Post :userhandle="userhandle" :caption="caption" :likeCount="0"
:mediaSource="mediaSource" :hideActionIcons="true" />

</template>

Listing 34: Create page in Nuxt (Template)

55

31
32
33
34
35
36

0~ DO W N

24
25
26
27
28
29
30
31
32
33
34

// create.vue
export default {
name: "CreateView",
data() {
return {
preloadedMedia: [

"canyon.mp4", "abstract-circles.webp",
1,
userhandle: "@you",
caption: "",
mediaUrl: "",
mediaChoice: "",
3
1,

computed: {
mediaSource () {
if (this.mediaUrl) return this.mediaUrl;
return this.mediaChoice;
},
},

Listing 35: Create page in Nuxt (Script)

// CreatePost.js

import { useState } from "react"

import { Link } from "react-router-dom"

imort styles from "./CreatePost.module.css"

import NotInstagramlLogo from "src/components/NotInstagramLogo"
import Post from "src/components/Post"

import XIcon from "src/components/icons/XIcon"

const preloadedMedia = [
"canyon.mp4", "abstract-circles.webp",
]
const userhandle = "Qyou"
const CreatePost = () => {
const [caption, setCaption] = useState("")
const [mediaUrl, setmediaUrl] = useState("")
const [mediaChoice, setmediaChoice] = useState("")
function mediaSource() { return mediaUrl || mediaChoice 7}

return <>
<header >
<Link to="/">
<NotInstagramLogo />
</Link>
<Link to="/">
<XIcon />
</Link>
</header>

<form id={styles.newPostForm} action="" method="post">
<input type="url" name="mediaUrl" id={styles.medialUrl}
placeholder="Insert your media URL here..."
value={mediaUrl} onChange={(event) =>
setmediaUrl (event.target.value)} />
<p>or</p>

56

36 <select name="preloaded-image" id={’preloaded-image’}
value={mediaChoice} onChange={(event) =>
setmediaChoice(event.target.value)}>

37 <option value="">Choose one of our media files
here...</option>

38 {preloadedMedia.map(media => <option key={medial
value={medial}>

39 {medial}

40 </option>

41)3

42 </select>

43 < name="caption" id={styles.caption} cols="30" rows="3"

placeholder="Type your caption here" value={caption}
onChange={(event) => setCaption(event.target.value)l} />

44 <button type="submit" disabled={!(caption && mediaSource())}>

45 Post it!

46 </button>

47 </form>

48

49 <hr />

50

51 <Post userhandle={userhandle} caption={caption} likeCount={0}
mediaSource={mediaSource ()} hideActionIcons={true} />

52 </>

53}

54

55 export default CreatePost

Listing 36: Create in React

1 // create/+page.svelte

2 import NotInstagramLogo from
’$lib/components/NotInstagramLogo.svelte’;

3 import XIcon from ’$lib/components/icons/XIcon.svelte’;

4 import Post from ’$lib/components/Post.svelte’;

5

6 export const preloadedMedia = [

7 "canyon.mp4", "abstract-circles.webp",
8 1

9

10 export const userhandle = ’Qyou’;

11 export let caption = ?7;

12 export let mediaUrl = ’?;

13 export let mediaChoice = ?7;

14 let mediaSource: string;

15 $: mediaSource = getMediaSource(mediaUrl, mediaChoice);
16

17 function getMediaSource(url: string, choice: string) {
18 return url || choice;

19 ¥
Listing 37: Create in Svelte (Script)
20 <!-- create/+page.svelte -->
21 <header>
22
23 <NotInstagramLogo />
24
25
26 <XIcon />
27

28 </header>

57

29
30
31

32
33

34
35
36
37
38
39

40

41
42
43
44
45

<form id="newPostForm" action="" method="post">
<input type="url" name="mediaUrl" id="mediaUrl"
placeholder="Insert your media URL here..."
bind:value={mediaUrl}/>
<p>or</p>
<select name="preloaded-image" id="preloaded-image"
bind:value={mediaChoice}>
<option value="">Choose one of our media files here...</option>
{#each preloadedMedia as media}
<option value={medial}>{medial}</option>
{/each}
</select>
<textarea name="caption" id="caption" cols="30" rows="3"
placeholder="Type your caption here" bind:value={caption} />
<button type="submit" disabled={!(caption && mediaSource)}> Post
it! </button>
</form>

<hr />

<Post {userhandle} {caption} likeCount={0} {mediaSource}
hideActionIcons={truel} />

Listing 38: Create in Svelte (Template)

58

B List of Figures

I Screenshots of the Notlnstagram application’s pages (path in |

parentheses)|. 8
12 Pages, Components ands Services ot the Notlnstagram application| 10
13 Classes used by the Notlnstagram services| 10
4 Timing attributes defined by the Pertormanceliming interface |
and the PerformanceNavigation interface (W3C[[2012)] 12
|5 Graphical subdivision of the About page into components (Welches |
Diagramm ist besser?)| o o 22

6 Adapted component structure for Astro Islands (React compo- |
nents are marked blue, duplicate components are white and blue)| 28

C List of Tables
-SRI BT 5ol OS] SSE e |

der some pages or components upon request, but also require CSR] 12

testing the applications hosted locally| 14

D Acronyms

CI/CD Continuous Integration and Continuous Deliv-
ery.

CLI Com%r%jl Line Interface. [18] [19] [30}

CSR Client-side Rendering. [7 [{T] [12] [15] [16]
28 9

CSS Cascading Style Sheet. @ E, EI,

DOM Document Object Model. @Iﬂ@,
7% 1} 25 B% B7} BT} B9

FVC First Visual Change.

HTML Hypertext Markup Language. EI, l EL

(18} [[7] [T} 20} 2T} 26} 29} B0} "Fﬂ

HTTP Hypertext Transfer Protocol.

JS JavaScript. Iﬂ’ . . .

JSON JavaScript Object Notion. . .

LCP Largest Contentful Paint. . .
LVC Last Visual Change. !

OFVC Observed First Visual Change. , ,
OLVC Observed Last Visual Change. , ,

59

PWA Progressive Web App.

SEO Search Engine Optimization.

18,
SSR Server-side Rendering. 15|
SVG %pport Vector Graphic. EI,

TBT Total Blocking Time. [15] [16] [17] 20
TBW Total Byte Weight. [14] [15] [20} |59
TTFB Time To First Byte. (14} |15} [20} |59

TTI Time To Interactive.—h 15) {16} |17

URL Uniform Resource Locator.

References

Chopin, S., Parsa, P., Roe, D., Fu, A., Lichter, A., Wilton, H., Lucie, and
Huang, J. (2024). Installation. https://nuxt.com/docs/getting-started/
installationl accessed 08/07/2024.

Devographics (2024). State of javascript 2023. https://2023.stateofjs.com/
en-US/libraries/front-end-frameworks/. accessed 07/29/2024.

Google (2019a). Eliminate render-blocking resources. https:
//developer.chrome.com/docs/lighthouse/performance/
render-blocking-resources. accessed 08/01,/2024.

Google (2019b). Lighthouse variability. https://developers.google.com/
web/tools/lighthouse/variability. accessed 08/01/2024.

Google (2020). Largest contentful paint. https://developer.chrome.com/
docs/lighthouse/performance/lighthouse-largest-contentful-paint.
accessed 07,/28,/2024.

Google LLC (2024). Setting up the local environment and workspace. https:
//angular.dev/tools/cli/setup-locall accessed 08/07/2024.

Instagram from Meta (2024). Instagram. https://www.instagram.com/. ac-
cessed 08/02/2024.

MDN Mozilla (2024a). Intersectionobserver. https://developer.mozilla.
org/en-US/docs/Web/API/IntersectionObserver. accessed 08/06/2024.

MDN Morilla (2024b). Render-blocking. https://developer.mozilla.org/
en-US/docs/Glossary/Render_blockingl accessed 08/09/2024.

Meta Platforms, Inc. (2024). Getting started. https://legacy.reactjs.org/
docs/getting-started.html. accessed 08/07/2024.

Schott, F. K. (2024). Install and set up astro. https://docs.astro.build/
en/install-and-setup/. accessed 08/07/2024.

60

https://nuxt.com/docs/getting-started/installation
https://nuxt.com/docs/getting-started/installation
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://developer.chrome.com/docs/lighthouse/performance/render-blocking-resources
https://developer.chrome.com/docs/lighthouse/performance/render-blocking-resources
https://developer.chrome.com/docs/lighthouse/performance/render-blocking-resources
https://developers.google.com/web/tools/lighthouse/variability
https://developers.google.com/web/tools/lighthouse/variability
https://developer.chrome.com/docs/lighthouse/performance/lighthouse-largest-contentful-paint
https://developer.chrome.com/docs/lighthouse/performance/lighthouse-largest-contentful-paint
https://angular.dev/tools/cli/setup-local
https://angular.dev/tools/cli/setup-local
https://www.instagram.com/
https://developer.mozilla.org/en-US/docs/Web/API/IntersectionObserver
https://developer.mozilla.org/en-US/docs/Web/API/IntersectionObserver
https://developer.mozilla.org/en-US/docs/Glossary/Render_blocking
https://developer.mozilla.org/en-US/docs/Glossary/Render_blocking
https://legacy.reactjs.org/docs/getting-started.html
https://legacy.reactjs.org/docs/getting-started.html
https://docs.astro.build/en/install-and-setup/
https://docs.astro.build/en/install-and-setup/

StatCounter (2024). Quick start. https://gs.statcounter.com/. accessed
07/18/2024.

Svelte (2024). Introduction. https://svelte.dev/docs/introduction. ac-
cessed 08/07/2024.

Vercel, Inc. (2024). Installation. https://nextjs.org/docs/
getting-started/installation. accessed 08/07/2024.

W3C (2012). Navigation timing. https://www.w3.org/TR/
navigation-timing/. accessed 07/10/2024.

Web Hypertext Application Technology Working Group (2024). Html
living standard. https://html.spec.whatwg.org/multipage/dom.html#
current-document-readiness! accessed 07/30/2024.

You, Evan (2024). Quick start. https://vuejs.org/guide/quick-start.
html. accessed 08/07/2024.

Github repository: All projects and additional meterial can be found
under https://github.com/andreasnicklaus/master,

61

https://gs.statcounter.com/
https://svelte.dev/docs/introduction
https://nextjs.org/docs/getting-started/installation
https://nextjs.org/docs/getting-started/installation
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://html.spec.whatwg.org/multipage/dom.html#current-document-readiness
https://html.spec.whatwg.org/multipage/dom.html#current-document-readiness
https://vuejs.org/guide/quick-start.html
https://vuejs.org/guide/quick-start.html
https://github.com/andreasnicklaus/master

	Introduction
	Related Work
	Design
	Example Application
	Choice of frameworks
	Hosting Environments
	Performance Metrics
	Page Load Times
	Component Load Times
	Component Update Times

	Testing Tools

	Implementation
	Components
	Tests

	Evaluation
	Page Load Times
	Component Load Times
	Component Update Times

	Conclusion
	Summary
	Listings
	List of Figures
	List of Tables
	Acronyms

