
Masterarbeit im Studiengang Computer Science and Media

WIP: Mega-fast or just super-fast? Performance
di�erences of mainstream JavaScript

frameworks for web application

vorgelegt von

Andreas Nicklaus
Matrikelnummer 44835

an der Hochschule der Medien Stuttgart

am 1. August 2024

zur Erlangung des akademischen Grades eines Master of Science

Erst-Prüfer: Prof. Dr. Fridtjof Toenniessen
Zweit-Prüfer: Stephan Soller

Ehrenwörtliche Erklärung

Hiermit versichere ich, Andreas Nicklaus, ehrenwörtlich, dass ich die vorliegende
Masterarbeit mit dem Titel: �WIP: Mega-fast or just super-fast? Performance
di�erences of mainstream JavaScript frameworks for web application� selbst-
ständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen
Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem
Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Anga-
be der Quelle kenntlich gemacht. Die Arbeit ist noch nicht verö�entlicht oder
in anderer Form als Prüfungsleistung vorgelegt worden.

Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungs-
rechtlichen Folgen (�26 Abs. 2 Bachelor-SPO (6 Semester), � 24 Abs. 2 Bachelor-
SPO (7 Semester), � 23 Abs. 2 Master-SPO (3 Semester) bzw. � 19 Abs. 2
Master-SPO (4 Semester und berufsbegleitend) der HdM) einer unrichtigen oder
unvollständigen ehrenwörtlichen Versicherung zur Kenntnis genommen.

Eislingen, den 1. August 2024

Andreas Nicklaus

1

Zusammenfassung

Diese Arbeit kurz und knackig.

Abstract

This work in a nutshell.

Disclaimer: This paper has been written with the help of AI tools for trans-
lating sources and outlining parts of the written content. All content has been
written or created by the author unless marked otherwise.

2

Contents

1 Introduction 4

2 Related Work 5

3 Design 5
3.1 Example Application . 5
3.2 Choice of frameworks . 11
3.3 Hosting Environments . 11
3.4 Performance Metrics . 13

3.4.1 Page Load Times . 14
3.4.2 Component Load Times 16
3.4.3 Component Update Times 17

3.5 Testing Tools . 18

4 Implementation 20
4.1 Components . 20
4.2 Tests . 20

5 Evaluation 20
5.1 Page Load Times . 20
5.2 Component Load Times . 20
5.3 Component Update Times . 20

6 Conclusion 20

7 Summary 20

A List of Figures 21

B List of Tables 21

C Acronyms 21

3

1 Introduction

Throughout the evolution of the world wide web, many changes have disrupted
the way websites are created. From simple �le servers run by few selected
institutions, simple static web pages and dynamic services like blogs and forums
to websites created with the help UI tools and web development frameworks,
mainly written in JavaScript, development has changed drastically since its
beginning.

Older web pages often lacked features, that developers today work with as
a matter of course. Yet their load and rendering most likely would be brazingly
fast with today's technological advancements in networking, browser functional-
ities and user equipment. Modern websites though are often bigger in size, have
a lot more features and are in many respects more complex. Due to the increased
complexity, the mere volume of a webiste's data has increased, especially with
more and more multimedia �les. That in return has increased the demand for
better performance on all components of the load and rendering process. This
technological advancement has upped the technological sophistication for devel-
opment tools as well. Today's modern web development frameworks support
developers with tools to create sites and applications through terminal com-
mands. They often increase the content-per-line-of-code quota through implicit
page generation in contrast to the explicit writing of source code from earlier
times. Many frameworks even feature con�guration options for directly hosting
the webpage.

As the generation process changed from writing code manually to auto-
matically, this implicit page generation undoubtedly increased speed through
faster content generation and a greater developer experience for some devel-
opers. Because developer experience varies between di�erent frameworks and
some approaches are more intuitive to respective developers, a current trend
has evolved for developers to become experts in a single framework rather than
many. This trend leads to a tribal con�ict as to which framework is better than
others with each tribe being convinced that their framework is the best. There
is no apparant way to determine a �best framework� in terms of Developer Ex-
perience because it is a subjective criterion. The performance of a framework
as assessed by the developer can be similar or greatly di�erent, depending on
the frameworks and the interviewees.

When it comes to User Experience and especially the Perceived User Expe-
rience however, there are plentiful collections of metrics and criteria to choose
from so as to determine the performance of websites, not frameworks. The opti-
mization of websites has become a goal during development because it has a real
e�ect on both the ranking of web pages in search engines and the user behavior.
Both e�ects create business interests and �nancial incentives to invest resources
into performance optimization. However, the lack of research on the topic sug-
gests either a consensus for a negligible e�ect of the development framework on
the website's performance or a lack of knowledge of the e�ect. Measurements
on the e�ect of the development framework are a major convoluted task simply
because the performance of a speci�c website can be dependent on many other
factors such as the user's device, browser, networking hardware or server-side
hardware. The number of possible combinations of factors and their reliability
makes it di�cult to measure a single performance run with a reliable result. Ev-

4

ery single result is only a small part of a large number of possible performances
the same application could achieve with di�erent parameters. It is therefore
perceivable that a �perfect combination� of hard- and software exists for each
framework or in general, but it is currently not possible to �nd such a combi-
nation because the necessary data is missing.

Many modern web tracking services provide data about the user, the user's
devices, current page load times and so on. This data is helpful in determining
current poor performances and therefore possible starting points for optimiza-
tion e�orts. But it gives very little information about recommended actions or
recommended choice of frameworks for a redesign of a web application. Relying
on marketing material for choice of frameworks is equally questionable because
most modern frameworks claim to be fast, easy to use and performance e�cient.
This suggests that each would be a great choice for developers.

In order to �nd a suitable framework for an application, a set of metrics
needs to be at least outlined for comparison. Many former studies suggest
metrics to be relevant for the User Experience or Search Engine Optimization.
Content metrics such as word count or presence of meta tags might be important
for some performance measurements, but might also have no e�ect on the User
Experience. In contrast, rendering metrics such as page load time or page weight
might be ascribed to the framework used during development.

The performance of a framework towards the user can very rarely be com-
pared because there are no publicly available comparisons between exact replicas
of web applications built with di�erent frameworks. Therefore, a comparative
study between the same website built with di�erent frameworks is needed to
get as close as possible to an exact website replica. With this data, an informed
choice might be made for other projects.

The goals of this paper are to propose a set of metrics that allow com-
paring mainstream JavaScript frameworks for web applications, to provide a
comparative study between selected frameworks and create a tool to compare
the rendering performance of a page as a whole and of dynamic components
within a page.

2 Related Work

3 Design

Whereas the following chapters cover the implementation of testing and evalu-
ation of results, this section introduces the concept of the comparative study.
The goals of and requirements for the example application, the di�erences and
choices for the hosting environments for testing and the tools for testing as well
as selected metrics will are described here.

3.1 Example Application

The example application for the study is designed to be a benchmark application
for testing. The following goals were considered during the design process:

1. Page types: With the goal of covering most kinds of webpages, three
types were identi�ed based on the time of data loading. These types di�er

5

in timing at which the DOM content is loaded or updated. The de�nition
of a �nished load or update for this work is that the linking of resources
does constitute a �nished load or update of the webpage regardless of the
load time of said resource. The only condition for that is that any linked
resource does not update the DOM in any way. If a resource does, then
the load or update is considered not �nished.

(a) Static pages are webpages which do not change their content after the
initial response from the web server. The initial HTML document
already is the only resource that is necessary to create a complete
DOM. If inline skripts update the DOM, they are considered external
resources.

(b) Delayed pages do not have a complete DOM after loading and parsing
of the initial HTML document. Some data or content is loaded and
inserted (or removed) into the DOM after the initial render. The
time of these updates can be any time after the initial render, but
the execution of code or start of request for the resource that is
responsible for the update has to be directly or indirecly triggered by
the content of the initial DOM or HTML document.

(c) Dynamic pages can be updated or update themselves by events that
are not triggered by the content of the initial DOM or HTML doc-
ument. These events can either be triggered by user interaction or
other events such as websocket messages. The time of such updates
is by their nature not predictable. Dynamic pages are either static
or delayed with additional possibilities for updates.

This list is created with the knowledge that frameworks or other technol-
ogy such as caching may move a webpage from one type to another.

2. Modern Development Practices: The example application should
contain modern development practices that do project onto the DOM.
Practices that have no e�ect on either the projection of data or user in-
teraction, such as coding styles or project management, are considered to
have no e�ect the performance of the page.

(a) Components: All pages of the app have to consist of components that
encapsulate reproducable HTML snippets and may project data onto
the DOM.

(b) List iteration: Because iterating long lists may decrease performance
noticably, some components or pages should implement list iteration.

(c) String interpolation: Although it is not considered a performance
issue before testing, string interpolation is prevalent in all modern
frameworks known to the author.

(d) Services: Separation of functions in services is wide spread practice
to reduce code duplicates and easy refactoring. In this case, services
also allow to intentionaly implement delays for testing purposes.

3. CSS: Even though the usage of CSS can in no way be considered a mod-
ern practice, it is still used on e�ectively every webpage. Additionally,

6

stylesheets are considered render-blocking resources that impact perfor-
mance negatively. For this purpose, CSS shall be implemented for both
pages and components.

4. Rendering time: In addition to page type depending on the time of data
load, the machine and time of composing the DOM is dependent on the
content availability. For this paper, three di�erent types are considered:

(a) Client-side Rendering (CSR): The initial request gets a response with
a mostly empty HTML document (�skeleton�) except linked CSS and
JS resources which after loading, parsing and execution update the
DOM.

(b) Server-side Rendering (SSR): Updates that happen after receiving
the skeleton through JS code execution on CSR, happen before the
initial request is responded to on the web server. The initial HTML
document is �lled and no longer a skeleton with SSR. Therefore,
it has greater byte size. Server-side Rendering requires an �active�
front-end server rather than only a �le server to execute code.

(c) Prerendering: Rendering happens during build time of the applica-
tion. This increases the build time and the byte size of the initial
HTML document, but only a �le server is needed for hosting.

5. Multimedia: Most of network load and therefore network delay is made
up by multimedia �les. Although compression has gotten better over time,
the byte size made up by multimedia �les of a webpage has gotten larger
over the last years. Therefore, size optimization of image and video �les is
considered a major part of performance optimization and a great potential
for a performance increase by the used framework.

Based on these considerations, the application �NotInstagram� was designed
as a comparable example application. It is heavily inspired by Instagram and
a partial reproduction of its app design. �NotInstagram� consists of four pages
(see �gure 1). 1a shows the design of the Feed page. It is the start page of
the app and contains 4 parts: the header, the pro�le list, the post list and a
footer. Each item of the feed page is to be implemented as its own component
or components. The plus icon in the header links to the create page, the footer
links to the about page and every instance of a pro�le picture and pro�le name
links to a pro�le page. The later contains pro�le information including a pro�le
picture, name, user handle / ID, pro�le creation time, caption and a grid of all
the user's posts (see �gure 1b). The pro�le component encapsulates all HTML
elements of that page except the header containing the app logo and X icon,
which both link back to the feed page. Both the feed page and the pro�le page
are generally expected to classify as delayed pages, because the content of pro�le
and posts lists can only be loaded after the page load.

The Create page (see �gure 1c) has three parts. The header contains the
app's logo and a X icon linking to the feed. A form with three <input> elements
and a <button> element allows the input of an multimedia source (image or
video) and a text caption. The multimedia source can either be an URL or
a selection from a list of preuploaded �les. The post caption is a pure text
input. The lower part of the page is the post preview, in which some prede�ned

7

information such as user pro�le and the user inputs are combined. As such,
the pro�le page is a static page until the user uses the creation form, at which
point is has to be considered a dynamic page. The About page (see �gure 1d)
is designed to statically display information about the application. It is a static
page because no content is loaded after a delay and no user inputs are possible.

With these pages all page types are covered for testing. The About page and
Create page are static, whereas the Feed page and Pro�le page are partly static
(header and footer), but mostly delayed. The Create page is the only page with
dynamic content.

(a) Feed / Index Page (/) (b) Pro�le Page (/user/@PeterPoster)

(c) Create Page (/create) (d) About Page (/about)

Figure 1: Screenshots of the NotInstagram application's pages (path in paren-
theses) (Bilder müssen noch geändert werden)

The data fetching and loading is designed to be implemented as services. For
NotInstagram two di�erent services are needed. The PostService is a service for

8

all components to query posts. The method getAll() returns a list of all
posts by all users and getByUserHandle(handle) returns the same list �ltered
by those posted by a user with the handle equal to the function parameter.
Pro�leService is a service to query user pro�les. It has the same two methods
which return all user pro�les and only one user pro�le respectively. Services
are designed asynchronous, but the data is not queried from a server external
to the browser, but hard coded. This design decision is based on the premise
that delay can be coded into or out of asynchronous functions to mimic network
delay for testing purposes if necessary.

Figure 2 describes the usage of components and services within page views.
It displays the four pages of NotInstagram as views, the two services and 15
components. Seven of those components are icon components. Those compo-
nents serve as wrappers for SVGs to ensure their correct scale and style. XIcon
poses an exception to the design as it is a wrapper for a PlusIcon component
rotated by 45°. The colored arrows show the usage of one of the services. Both
FeedView and ProfileView use both services to load data. For the Feed page,
both PostService.getAll() and ProfileServices.getAll() are needed to
pass the data to PostList and ProfileList. Notably, each Post component
accesses the Pro�leService again, to get the pro�le image and name for its head-
line, even if the information is available in a parent or grandparent component.
Figure 3 displays the connections between post and pro�le object instances. The
member userhandle of a post references the member handle of a user pro�le.
The Pro�le page needs access to the service to get the information of the re-
quested pro�le and a list of posts from the getByUserHandle methods to pass
into the Profile component. LogoHeader, NotInstagramLogo and InfoBlock

are not data-presenting components, but rather styling components. Their only
function is styling text or projecting HTML elements with CSS information.

In contrast, the MediaComponent is designed as a way to allow both internal
and external images and video source. It is used by ProfileList, Post and
Profile to display posts and pro�le images. It's main goals is to decide based
on the passed image source string how to project the multimedia �le onto the
DOM. The component accepts source strings for images and videos, di�erenti-
ated against by the string's ending and therefore the �le's extension. If it is a
local image, namely an image that was available for optimization at build time,
the best available form of optimized tag should be used. For external im-
age links starting with �http://� or �https://� a less optimized or unoptimized
 tag shall be inserted into the DOM. For videos, any source string is to
be projected onto a <source> tag with identical <video> wrapper.

The application referres to local images, which can possibly be optimized,
and external images, which cannot be optimized. The reason for this is the
assumption for this project that optimizing multimedia �les uploaded by a user
and referencing them in a manner suitable for this application is not suitable
for this work. Rather, the better alternative for serving the use case of the
application would be a dedicated server for encoding, decoding and generally
optimizing multimedia �les. Since this solution would be independent from the
front-end framework's performance and it would outgrow the scope of this work,
a distinction is only made between static images, called local images here, and
external images with full URLs.

9

Figure 2: Pages, Components ands Services of the NotInstagram application

Figure 3: Classes used by the NotInstagram services

10

3.2 Choice of frameworks

The choice of tested frameworks for this study is the choice for which frame-
works the application will be implemented in and tested. The requirements for
this selection are twofold. The application has to be implementable as designed
above with the framework without the use of any other non-native tool to the
framework or any tool that was not o�cially intended to be used in combina-
tion by the developers of the primary framework. Additionally, the application
must be implementable in JavaScript. This requirement includes TypeScript
frameworks because it is possible to use JavaScript in TypeScript applications.
Ease of use and developer experience should explicitly not in�uence the selection
process because it is part of the evaluation of the frameworks.

Because research revealed in early stages of the study that many frame-
works ful�l those requirements, the long list of candidates had to be sorted.
The deciding factor for this selection was usage, awareness of and positive sen-
timent towards tools among developers because the evaluation of mainstream
and general-purpose frameworks appear more valuable than lesser known or
specialised tools. A ranking of the most-used JavaScript front-end frameworks
of 2023 (Devographics, 2024) lists the four frameworks with the most developers
who have used it before: React (84%), Vue.js (50%), Angular (45%) and Svelte
(25%). In addition, Astro was chosen for its especially high awareness among the
category �other front-end tools� (30%), as well as its usage (19%) and interest
(62%) in the category �meta-frameworks�. From the last category of tools, two
other frameworks were selected: Next.js and Nuxt. Both tools are highly-used
frameworks and have the appearance and goal of improving React and Vue.js,
respectively. For this reason, they are interesting choices for this study. All
selected frameworks ful�l the requirements. The application is implementable
with all frameworks or intended addition of tools. Next.js and Nuxt require
the usage of React or Vue tools and dynamic components cannot be written in
pure Astro. Astro intends the usage of other frameworks to implement so-called
�islands�. For those components, React was chosen for its top usage rate.

Other frameworks were also considered for selection. Solid and Qwik seemed
�tting candidates in this study because of high interest among developers and
apparent potential for fast performance of their end product. Additionally, from
the ranking of most-used front-end frameworks Preact was considered with a us-
age percentage of 13%. Ultimately, all three were not chosen because of negative
sentiment or low usage among developers. This concludes the framework selec-
tion for this study. Table 1 list the selection and categorizes them into groups
with and without CSR and SSR. It also states whether the developer for the
application had any previous experience working with the framework. This in-
formation is important for the unintended performance optimizations and can
later be used for interpretation of the frameworks performance measurements.
Plus, it will in�uence the assessment of ease of use and developer experience.

3.3 Hosting Environments

After designing the application, the next step in the study process was to decide
on where the application is to be hosted for testing. Network delay is a great
part of render delay and performance issues because loading �les in sequence
will block rendering if parsing documents and executing code is dependent on

11

Framework CSR SSR Previous Experience
Angular yes no yes
Astro yes yes yes
Next.js no yes no
Nuxt yes (generate) no (build) no
React yes no yes
Svelte yes no no
Vue.js yes no yes

Table 1: List of selected frameworks. Items with both CSR and SSR render
some pages or components upon request, but also require CSR

Figure 4: Timing attributes de�ned by PerformanceTiming interface and the
PerformanceNavigation interface

network requests. The request delay is based on the speed of the web server, the
size of the generated �le, request and response and the network speed. Therefore
the time needed for ful�lling network requests should be considered in the choice
of hosting environment or service.

Figure 4 illustrates how a slow network may delay the rendering process of
a webpage. The tests for this study shall cover real-world hosting using pub-
licly available services and local hosting to both test the network delay and
test the application without interference of network speeds. Additionally, tests
can not be done only on local servers because tests shall include timings before
responseEnd. Requirements for the distant hosting environment or service are
threefold. The service shall have �active server capabilities�, meaning capabil-
ities that exceed pure static �leserver functions for Server-side Rendering and
similar functionalities. Furthermore, it is required to be a widely used hosting
service to ensure the real-world applicability of the study. Since this requirement

12

is not clearly applicable, it is considered a guideline. Lastly, to be applicable
for small projects as well as established larger websites the service chosen fo the
study is required to support free usage and integration into a Continuous Inte-
gration and Continuous Delivery (CI/CD) con�guration because it is a widely
used development practice. As such, the integration is important to require
the least possible manual con�guration for hosting the application because this
study is not supposed to be about the con�gurability. Rather, the study shall
focus on the "out of the box" performance of the frameworks. Continuing with
that sentiment, the optimization and therefore con�guration of the hosting en-
vironment is not part of this work. This is the methodology for answering the
question: With which framework do developers get the best performance for
their web applications without spending much or any time with optimization
and con�guration?

Based on these considerations and personal experience with the service, Ver-
cel was chosen for hosting the application for this study. Vercel supports prede-
�ned con�gurations and automatic recognition of all frameworks chosen for this
study. Also, Vercel projects integrate seamlessly into a CI/CD process based on
its integration with Github. A Github repository was created for each framework
and connected to a Vercel project. During initialization of the Vercel projects
and �rst preliminary tests, one problem with Vercel's free account quickly be-
came apparent: The bandwidth limitation of 100GB per month and account was
reached after two weeks of testing unoptimized and un�nished versions of the
applications with large image and video �les. Because no information was found
on the e�ect of a reached limit, the account was deemed dead for the month.
The solution to this problem was the creation a second free Vercel account and
the plan to create another account every time the limit would be reached in the
future, which it did not.

The second hosting environment for this study is hosting the application
locally on the testing machine. This environment ensures minimal network load
times and eliminates every other connected delays such as resolving domain
names. If the framework supports a �preview� mode, it was used for hosting
the application. Otherwise, the application would be build and hosted using the
serve command or the active server would be started with node <filename>. If
neither of the two options would be available, the �dev� mode of the application
would be used and tested. Table 2 lists the used commands for building and
starting the webserver per framework.

3.4 Performance Metrics

The load time and reactivity of a web page and its user interface decreases user
retention and continuing user actions over time independently from the content.
The �reaction time� is interpreted in three separate ways for this study: The
page load time, meaning the time from navigation start to DOM mutation, the
time from a state change, e.g. data query end, to DOM mutation, here called
component load time, and the time between a user input to �nished DOM
mutation, called component update time for this study. Nearly most of these
times can be combined from or described using navigation events (see �gure
4). These timing categories are not exclusive, but measurements for these time
categories do overlap.

Naturally, other metrics than the navigation timings were also considered.

13

Framework Build Command Host Command
Angular ng build serve

Astro astro build astro preview

Next next build next start

Nuxt nuxt build nuxt preview

nuxt generate nuxt preview

React react-scripts build serve

Svelte vite build vite preview

Vue vite build serve

Table 2: Build and host command for each used framework as used for testing
the applications hosted locally

From the list of measurements in Lighthouse reports (see chapter 3.5), sublists
with relevant metrics were created to properly represent the time measurements
of the described render sections and DOM mutation events. These reports
cover the initial load of a page and visual content presentation after initial load.
None of the Lighthouse metrics cover the time of DOM mutations after user
input events. Therefore, yet additional measurements have to be considered to
describe the performance of mutations. To this end, some self-written code is
injected through Playwright (see chapter 3.5) to measure the time of updates
to the DOM. The following sections describe which measurements are needed
for each render section in detail.

3.4.1 Page Load Times

In the context of this study, the �rst contact point for a user to a web page is
considered to be the �rst page load or initial page load. Within the initial load,
the user's main expectations and goals are assumed to be �nding a page with
the wanted information or input rather than �nding the information itself. As
a result, the aim of the client's browser and render engine for this �rst time
frame, called �page load� here, is to both parse HTML and project the content
of the page onto the DOM. In order to focus on this time frame, these metrics
describe the application's performance.

� Total Byte Weight (TBW): The total size of �les or content of response
directly increases either the App Cache time between fetchStart and
domLoading or domContentLoaded if the resource can be cached in the
client or the response time between responseStart and responseEnd

otherwise.

� Time To First Byte (TTFB): The time between navigationStart

and responseStart. Most of the network delay can be described by the
TTFB. Often inaccurately paraphrazed as �ping�.

� Time To Tnteractive (TTI): The time until the page can be interactive,
described by the DOM's loading state �interactive�. By navigation events
described as the time between navigationStart and domInteractive.
Notably, the timing of domInteractive is not reliable because a DOM

14

may become interactive, but the browser may not be interactive yet. Ad-
ditionally, resources may still be loading. For example, a DOM from a
HTML skeleton may be �interactive� after a few milliseconds, but no con-
tent may be rendered for the user to see, because CSR code is still loading
(Web Hypertext Application Technology Working Group, 2024).

� DomContentLoaded: Similar to TTI, DomContentLoaded measures
the time between navigationStart and domContentLoaded. At this point
in time, �all subresources apart from async script elements have loaded�
(Web Hypertext Application Technology Working Group, 2024). A large
di�erence between TTFB and DomContentLoaded indicates a great size
or at least long load time of subresources.

� LoadEventEnd: Total time spent imidiately after initial load of a page
until the DOM's onload event is �nished. This is the time from
navigationStart to loadEventEnd. The time represents both the ca-
pability of the used framework to optimize the usage of a client's and
network's resources on initial load and the priorization of JavaScript exe-
cution by splitting not immediately needed code into async scripts.

� Total Blocking Time (TBT): The total time spent by a browser with
parsing and optionally resources that block the rendering process from
�nishing. This includes stylesheets and scripts without the async or defer
tag. The metric directly represent the time before the browser can ful�l
the user's goal on initial load.

� Last Visual Change (LVC): Time from navigationStart until the last
visual change above the fold, meaning within the viewport of the user.

� Largest Contentful Paint (LCP): The time between navigation to
the page and the time of rendering for the visually largest text or image
element in the user's viewport (Google, 2020). Optimization of this metric
requires and understanding of the page's content and element size within
the viewport.

From this list of relevant metrics, some expectations can be formulated be-
fore testing for them. First, TBT is most likely slower with CSR frameworks
because the code execution �lling the HTML skeleton takes some time that is
not necessary in client with SSR and Prerendered pages. On delayed pages this
di�erence is expected to be very slight or nonexistent. Second, the LCP proba-
bly will not di�er across frameworks, but naturally across pages. In contrast, if
a framework does create a faster result for its LCP, it is expected to be a SSR
or Prerendering framework because of its expected shorter TBT. Third, CSR
frameworks di�er from SSR and Prerendering frameworks by Total Byte Weight
similar to Largest Contentful Paint. Although the HTML document is much
slimmer with CSR, the JS �les are expected to be equally larger than server-side
rendered and prerendered pages. It is probably nearly equal in sum because the
byte size of the page is likely mostly made up from multimedia �les such as
images and videos, CSS and JavaScript �les. Fourth, the selected frameworks
should be inversely seperable into groups by the Time To First Byte. Most likely
CSR and Prerendering frameworks will be faster for this metric because the web
server can serve as a static �leserver and does not have to execute any additional

15

code. Fifth, because CSR pages consist of only nearly empty HTML skeletons
and links to JS and CSS �les, the TTI is expected to be much faster for CSR
pages. Lastly, the timing of the loadEventEnd is not clearly predictable before
testing. The only expectation is that newer framework perform better in this
metric simply because they are newer and are expected to make optimizations
that go into a faster parsing and rendering of a web page.

With these expectations it would be most interesting to see the di�erences
between CSR and SSR frameworks. From the list of selected frameworks for this
study, those frameworks with direct competitors are Nuxt compared with Vue.js
as well as Next.js in comparison to React. Additionally, Angular and Svelte in
the group of CSR frameworks shall be compared with the SSR framework group
with Astro.

3.4.2 Component Load Times

As a second category of relevant metrics, measurements for the separation of
the app into components are grouped together. This category is designed to
re�ect the performance of the JavaScript that was generated by the framework.
This stands in contrast to how much content can be rendered by the time of
responseEnd. To this end, only measurements after responseEnd can be taken
into consideration. Each mutation from the initial DOM has to be interpreted
as a update to a component. The following metrics are part of this category.

� LoadEventEnd: The time between responseEnd and loadEventEnd.
It combines all render-blocking parsing and synchronized code execution.
Therefore, it is a combined indicator from the code performance and gen-
eral optimization.

� Observed First Visual Change (OFVC): The time of the �rst visual
update from a blank canvas. It is an indicator for the start of visual
rendering and a signal to a user that the page is working or loading. For
pages with itneractive elements, this metric is less important that the TTI.

� Observed Last Visual Change (OLVC): The time of the last visual
update to a web page. The metric is the most promisiing for this study
as it indicates the end of the perceptable rendering process and therefore
perceived load speed.

� Mutation Times: Time from initialization of the app with a predeter-
mined HTML element such as <main> to a DOM mutation. See section
3.4.3 for more info on this.

� TBT

� TTI

Based on the intention for testing these metrics, comparing or optimizing
JavaScript frameworks, the following expectations were presented before tests.
First, prerendered and SSR pages are expected to show a earlier FVC because
the execution of any code for delay components can start earlier. This expec-
tation comes from the added code of CSR applications to add static elements
to the DOM through JS. Second, CSR applications probably �nish their LVC

16

slightly earlier than other applications. The assumption for this prediction is
that every application starts long tasks only after the HTML was parsed which
takes longer for SSR or prerendered pages. As a result of these two expectations
the observations of a MutationObserver most likely have a lower maximum and
are less spread out for SSR and prerendered pages, but start later than CSR
pages. Third, as described above, the TBT is expected to be slightly later for
CSR than for SSR or prerendered applications and fourth, CSR apps should
have a slower TTI.

With these metrics, identifying bloated applications and components is the
goal. JavaScript that is loaded, parsed and executed that increases the initial
load time of a page should be indicated through these tests. Such unnecessary
or render-blocking scripts are pointed out through TBT and littele di�erence
between FVC and LVC. For example, a script can be considered unnecessary
for initial load if it is executed before rendering that only de�nes functions,
initializes objects that are not yet needed or creates a blocking dependency
chain, e.g. through importing another script.

3.4.3 Component Update Times

For the third category of relevant metrics, DOMmutation stemming from events
triggered by the user are grouped together. These event in�uence the user
experience on the condition that they lead to DOM mutations. Only two kinds
of measurements can be made to gain insight into update speed although three
measurements are perceivable.

� User Input Times: The time of a user input. The kind of user input
is not restricted to onInput or onChange events, but rather any event
triggered by the user.

� State Change Times:The time a state changes after user input. This is
usually not automatically directly testable because the internal function-
ality of the framework is not always observable.

� Mutation Times:Time of a mutation from user input within a prede-
termined HTML element such as <main> to another DOM mutation. A
MutationObserver is initialized and all mutations are recorded. Desig-
nated mutations to the DOM are added child elements, removed child
elements and attribute updates (added, edited and removed).

For these metrics no expectations could be formulated before testing because
the speed of an mutation is purely based on the implementation of the framework
itself. These implementations are not openly accessible without knowledge of
the frameworks' source code. Still, some prediction can be made independently
from a speci�c framework. Apps that represent their state in the DOM, e.g.
an �edited� state for a user input or an updated value attribute of an <input>

element, will most likely have. . .

1. more entries in the recorded DOM mutations and. . .

2. a later last entry in the recorded DOM mutations.

17

Also, the implementation of the app shows di�erences here as additional
elements, such as <div> elemets as wrappers for each component can in�uence
the time and number of updated elements in either direction, dependent on the
use case. To summarize some comparisons between frameworks or groups of
frameworks, the most appealing for the evaluation are the following.

1. CSR - SSR: Before testing, dei�erences between CSR and prerendered
pages are expected, but the metrics and amount of di�erences are a proba-
ble subject of interest. Because there is no perceivable di�erences between
prerendered pages and server-side rendered pages from a client perspec-
tive, they are grouped together in this context.

2. Angular - React - Vue: Because these CSR frameworks have been
competing for X years at this point and they are still the most famous
front-end frameworks, the comparison of these frameworks is relevant for
this study.

3. Nuxt - Vue.js:As a next generation of the Vue.js framework, the actual
performance increase of Nuxt is interesting for developers.

4. Next.js - React: Same as above

5. Vue-based - React-based: Because a direct comparison of frameworks
based on React and based on Vue.js is possible with multiple candidates, a
di�erence in performance is an actual relevant factor for the choice between
the ecosystems.

6. Svelte - Astro: As the most modernly popular frameworks in the se-
lection of frameworks, Astro and Svelte have the potential to both outdo
their contenders and outdo each other. This comparison is most interest-
ing for fans of new tools and the development teams of the frameworks
themselves.

3.5 Testing Tools

In order to test for these metrics, a set of multiple testing tools is needed. These
testing tools are required to cover the measurements describe above and the
tools have to work with similar con�guration for all selected frameworks. Test
reports have to be generated in a machine-readable format in order to evaluate
the results and create aggregate metrics from them. This is a requirement
because from previous experience it is known that performance values in the web
development context have a considerable variance. To this end, two di�erent
tools for automating tests were chosen:

1. Lighthouse CLI: The Lighthouse CLI makes it possible to automate the
generation of Lighthouse reports. Tests for these reports combine mea-
surements with weights in categories and reduce them to a single score, as
well as �ve main category scores. These categories are performance, acces-
sibility, best practices, SEO and PWA. Additionally, Lighthouse reports
contain recommendations for optimizing metrics and increasing the scores.
It is a popular tool for measuring the initial page loads, page content and
meta information for a web site. Changes after the initial page load are

18

not possible to test with the Lighthouse CLI. Reports are by default gen-
erated as HTML �les, but the tool was con�gured to generate both HTML
and JSON reports for this study. Since Lighthouse is designed to test live
websites in production, the tool does not support starting a local develop-
ment server. Testing with Lighthouse therefore needs to include building
and hosting the application locally while tests are running.

2. Playwright: Playwright is a front-end testing tools for web applications
in development. It mainly supports checking page content, but also sup-
ports the execution of injected JavaScript and full control over the browser.
This also means that the control over the user inputs enables measure-
ment of timings connected to user behaviour such as clicking links and
buttons, hover the mouse over elements or using <input> elements. Such
options are needed to evaluate the timings of interactive elements. The
development-focused design also bears the advantage of its initialization
being included in some framework's initialization options. Both Svelte
and Vue.js support installing and initializing con�guration for Playwright
in their own initialization (see chapter 4 for more on this). Similar to
Lighthouse, reports can be created as HTML and JSON �les. For this
study, only JSON reports were used for the results, but HTML reports
were used for debugging tests.

Although all requirements can be ful�lled with these tools, multiple prob-
lems were found with them. Because Lighthouse reports include data that is
in�uenced by all actors and constraints regarding the web page, many factors
contribute to the variability of its results. Google (2019) contains a list of
sources of variability. The relevant sublist of factors for this study contains for
local tests client resource contention, client hardware variability and browser
nondeterminism. Client hardware variability is mitigated throught the usage
of the same client device for all tests. The client device in question is a HP
Envy x360 Convertible 15-eu0xxx with an AMD Ryzen 5 5500U processor and
16GB RAM. The operating system on the device is Windows 11 Home (Ver-
sion 10.0.22631) during testing. Client resource contention could not be fully
mitigated. Attempts to keep a lid on client resources was killing the most hard-
ware intensive background tasks and services on the test machine before starting
tests. Browser nondeterminism was taken into account and adopted as a test
dimension because the target group of an application should be factor for the
choice of framework, especially for purely desktop or mobile applications. To
this end, tests were executed with the most commonly used browsers wherever
possible. For Lighthouse tests, such an option was not found. Instead, all tests
were explicitly executed on Google Chrome for desktop. A Lighthouse report
was not generated on other browsers.

For tests on a distant server, other factors contribute to the �uctuation of
Lighthouse test results in addition. Local network variability, tier-1 network
variability and web server variability have to be considered for the tests. The
�rst two could not be mitigated. The internet connection speed at the test
location was 100 Mbit/s to simulate common modern consumer internet con-
nections. Web server variability could not be mitigated as well. For this reason,
a hosting service was explicitly chosen for all tests to minimize the variability
across frameworks (see section 3.3).

19

For mitigation of all factors of variability, Lighthouse tests were executed 20
times to gain an average of all measurements. The repetitions were con�gured
with the same browser context and web server for local tests for each run. The
reason for this decision is that �uctuations based on the �rst requests within
the client or the server should be mitigated with this method.

Two additional problems with Playwright were found before the start of the
test phase. The time of injection for JS script could not be properly determined.
This �uctuation could not be mitigated. Also, reading data from the window
context after the fact proved to be di�cult because the context closes after the
test ends and the report only contains explicitly tested values. Objects such
as the needed navigation timings are no longer available after the fact. The
solution to this problem was to attach all necessary information as a �le to the
report so it is readable after the context closed.

With all tools and workarounds in place, the data needed for the study could
be collected. Lighthouse covers TBW, TTFB, TTI, TBT, LCP, FVC, OFVC
and OLVC whereas Playwright cover all naviation and HTML event times,
namely DomContentLoaded, LoadEventEnd, user input times, state change
times and mutation times.

4 Implementation

4.1 Components

4.2 Tests

5 Evaluation

5.1 Page Load Times

5.2 Component Load Times

5.3 Component Update Times

6 Conclusion

7 Summary

20

A List of Figures

1 Screenshots of the NotInstagram application's pages (path in
parentheses) (Bilder müssen noch geändert werden) 8

2 Pages, Components ands Services of the NotInstagram application 10
3 Classes used by the NotInstagram services 10
4 Timing attributes de�ned by PerformanceTiming interface and

the PerformanceNavigation interface 12

B List of Tables

1 List of selected frameworks. Items with both CSR and SSR ren-
der some pages or components upon request, but also require CSR 12

2 Build and host command for each used framework as used for
testing the applications hosted locally 14

C Acronyms

CI/CD Continuous Integration and Continuous Deliv-
ery.

CLI Command Line Interface.
CSR Client-side Rendering.
CSS Cascading Style Sheet.

DOM Document Object Model.

FVC First Visual Change.

HTML Hypertext Markup Language.

JS JavaScript.
JSON JavaScript Object Notion.

LCP Largest Contentful Paint.
LVC Last Visual Change.

OFVC Observed First Visual Change.
OLVC Observed Last Visual Change.

PWA Progressive Web App.

SEO Search Engine Optimization.
SSR Server-side Rendering.
SVG Support Vector Graphic.

TBT Total Blocking Time.

21

TBW Total Byte Weight.
TTFB Time To First Byte.
TTI Time To Tnteractive.

References

Devographics (2024). State of javascriot 2023. https://2023.stateofjs.com/
en-US/libraries/front-end-frameworks/. accessed=07/29/2024.

Google (2019). Lighthouse variability. https://developers.google.com/web/
tools/lighthouse/variability. accessed=08/01/2024.

Google (2020). Largest contentful paint. https://developer.chrome.com/

docs/lighthouse/performance/lighthouse-largest-contentful-paint.
accessed=07/28/2024.

Web Hypertext Application Technology Working Group (2024). Html
living standard. https://html.spec.whatwg.org/multipage/dom.html#

current-document-readiness. accessed=07/30/2024.

22

https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://developers.google.com/web/tools/lighthouse/variability
https://developers.google.com/web/tools/lighthouse/variability
https://developer.chrome.com/docs/lighthouse/performance/lighthouse-largest-contentful-paint
https://developer.chrome.com/docs/lighthouse/performance/lighthouse-largest-contentful-paint
https://html.spec.whatwg.org/multipage/dom.html#current-document-readiness
https://html.spec.whatwg.org/multipage/dom.html#current-document-readiness

	Introduction
	Related Work
	Design
	Example Application
	Choice of frameworks
	Hosting Environments
	Performance Metrics
	Page Load Times
	Component Load Times
	Component Update Times

	Testing Tools

	Implementation
	Components
	Tests

	Evaluation
	Page Load Times
	Component Load Times
	Component Update Times

	Conclusion
	Summary
	List of Figures
	List of Tables
	Acronyms

