Mega-fast or just super-fast?
Performance differences of
mainstream JavaScript frameworks
for web applications

Andreas Nicklaus
17.10.2024

Note
- Dankeschön
 - präsentieren zu dürfen
 - Zeit, in Präsenz
- Titel
 - Performance-Unterschiede in Endprodukten

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Agenda

1. Themenubersicht

2. Fragestellung

3. Losungsstrategie und -design
4. Ergebnisse

5. Lessons Learned

Andreas Nicklaus, 17.10.2024

Note
1. Thema einführen + Tiefe
2. Fragestellung für heute
3. Strategien zur Beantwortung + erklärende Worte zu Design
4. wichtige Ergebnisse: graphisch + Zahlen für Interpretation
5. 5 Minuten Lessons Learned für weitere Arbeiten

<PAUSE>

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

1. Themenibersicht

“ Websites are made up of files written in HTML and CSS that are
rendered and displayed in web browsers. They can be static, with

pre-defined content, or dynamic, changing automatically based
on user input or other factors. [1]

Display]

Multimedia

Andreas Nicklaus, 17.10.2024

%

https://www.scribd.com/document/471812575/A-website
Note
- gefundene Definition
- moderne Webseiten
 - other factors -> JS
 - statisch und dynamisch
 - Komplexität
 - Vorhersehbarkeit der Performance
- Diagram
 - dynamische: +Nutzer, +Netzwerk, +Services (Backend, DB, APIs)
 - viele Faktoren
 - Probleme -> langsamster Pfad

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Page

Component

Webserver

Multimedia

&
0 o

Y'Y

Andreas Nicklaus, 17.10.2024

Display

Note
- Für Entwickler schwieriger
- Pfad rechts aufwendig
- Pfad links fast unmöglich
- Hoffnung: Foren für gewähltes Framework
- -> Frage nach bestem Framework

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

2. Fragestellung

“ Hat die Wahl des Frameworks einen fur den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

Andreas Nicklaus, 17.10.2024

b

Note
Oder anders formuliert: <VORLESEN>

- 3 Aspekte herausstellen

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

2. Fragestellung

“ Hat die Wahl des Frameworks einen fur den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

e Framework

Andreas Nicklaus, 17.10.2024

b

Note
1. Framework
 1. Entwicklungs-Framework
 2. nicht einfach & gut konfigurierbar, sondern as is

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

2. Fragestellung

“ Hat die Wahl des Frameworks einen fur den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

e Framework

e fUr den Nutzer merklich

Andreas Nicklaus, 17.10.2024

b

Note
2. für den Nutzer merklichen Einfluss
 1. unterschiedlich
 2. technisch vs wahrgenommen
 3. Zeiten unter 30ms ignorieren

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

2. Fragestellung

“ Hat die Wahl des Frameworks einen fur den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

e Framework
e fUr den Nutzer merklich

e Render-Geschwindigkeit

Andreas Nicklaus, 17.10.2024

b

Note
3. Render-Geschwindigkeit
 1. viel Facetten -> Tendenzen
 2. Beispiel: schnelle erste Änderung, späte letzte Änderung

<PAUSE>

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

3. Losungsstrategie und -design

1. Frameworks

2. Anwendung: Seiten, Komponenten und Content
3. Hosting-Umgebung

4. Metriken & Untersuchungsgegenstand

5. Test-Tools

6. Browser

Andreas Nicklaus, 17.10.2024

Note
- Versuch der Antwort -> 6 Dimensionen eingegrenzt
1. Frameworks
2. Anwendung: Bündelung, wiederverwendbare Ressourcen
3. Network Delay -> Hosting-Umgebung
4. Metriken beschreiben Untersuchungs-Gegenstand
5. Werkzeuge: Overhead -> -Performance
6. Browser

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

3.1 Frameworks

CSR SSR Entscheidungskriterien: [2]

Angular | Astro e Nutzungsquote

React | Next.js e Empfehlungsrate

Vue.js Nuxt

Svelte

Andreas Nicklaus, 17.10.2024

https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
Note
FRAMEWORKS:
- CSR und SSR vorlesen
 - Big 3
 - Liebling Astro
- Wahl:
 - vergangene Nutzung
 - Bereitschaft zu Nutzung
 - Neigung unter Entwicklern mit Erfahrung im Framework
- Bewusst CSR UND SSR

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

.2 Beispielanwendung

Notlnstagram + U0 Notlnstagram X Notlnstagram X -

Peter Poster nsert your image URL here... .
* @PeterPoster - Thig iy

Choose one of our images here.. ~ NOf[l’la’fﬂjf‘am

Your Profile Peter Poster Tina Traveller Lars Local Father, Athlete, Influencer in that order
Marketing Manager @HdM
ype your caption here
#father #athlete #influencer
o Peter Poster X
created just now

created by
o Peter Poster Andreas Nicklaus

@ @andreasnicklaus
@andreasnicklaus

V an067@hdm-stuttgart.de

S Nothing to see yet...

Choose an image to continue!

VIR o

196 likes

If you read this, you are great! Have a fantastic time

doing whatever it is that comes to your mind!

#ootd #foodie #Ineverthoughtthisdaywouldcome

3 days ago

Whheat is this?

B This project is part of the master thesis with the
TinaTraveller O likes title ..
Ll Nothing to see yet...

Insert a #caption to continue!
_ Just now

Andreas Nicklaus, 17.10.2024

Note
- Vergleich bedarf gleicher Umstände
 - sonst max. 2 Frameworks
- Nachbildung der App Instagram
- 4 Seiten
- Delayed vs statisch
- Create: Spezialfall -> Dynamisch
- Komponenten: Wrapper und Funktionen
 - Möglichkeit für un-konfigurierte Performanceoptimierung

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

3.3 Hosting-Umgebung

Vercel [3] Localhost

e Network Delay e Reine Render-Geschwindigkeit

e Kostenloses Konto o oder Framework Preview

e CI/CD Integration e Baseline ohne Netzwerkverzogerung

Andreas Nicklaus, 17.10.2024 12

https://vercel.com/
Note
HOSTING:
1. Anbieter
 1. Realistische Netzwerkverzögerung + Serverauslastung
 2. SSR-Funktionen
 3. kostenlos -> kleine Projekte
 4. Github + Github Actions
 5. Verbreitet
 6. Mit Netzwerkanfragen untersucht
2. Localhost
 1. ohne Netzwerkverzögerung
 2. Preview oder serve
 3. Baseline für Browser-Prozesse

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

3.4 Metriken

3 Kategorien zur besseren Unterteilung:

e Page Load Time (PLT)
e Component Load Time (CLT)
e Component Update Time (CUT)

|
|
request start t

Andreas Nicklaus, 17.10.2024

13

Note
METRIKEN:
- 3 Kategorien
- PLT
 - klassische PLT
 - requeststart bis DomContentLoaded
- CLT
 - Prozesse im Browser ohne...
 - Netzwerk
 - Serveraktivitäten (SSR)
 - Baseline für Browserprozesse
- Component Update Time
 - Reaktion auf Eingaben
 - Nutzereingaben
 - Websocket Nachrichten
 - nach PLT und CLT

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

PLT CLT CUT

Total Byte Weight X
Time To First Byte X
DomContentlLoaded X
_ast Visual Change X
Largest Contentful Paint | x

Andreas Nicklaus, 17.10.2024

Note
- Kategorien zuweisen (nur PLT)

1. TBW: Netzwerk-Bytes
2. TTFB: requestStart bis erstes Antwortbyte
3. DomContentLoaded: requestStart bis DOM geladen
4. LVC: letzte sichtbare Änderung im Viewport
5. LCP: Renderzeit des größten Element im Viewport -> empfundene Ladezeit

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

PLT CLT CUT

Time To Interactive X X
Total Blocking Time X X
LoadEventEnd X X
Observed First Visual Change X
Observed Last Visual Change X
DOM Mutation Times X X

Andreas Nicklaus, 17.10.2024

Note
1. TTI: requestStart bis DOM "interactive"
2. TBT: von Nutzereingaben abgehalten (Code / Parsing)
3. LoadEventEnd: requestStart bis OnLoad des DOM

4. OFVC und OLVC: requestStart bis visuelle Änderung im Viewport
5. DOM Mutations
 1. nicht bekannt
 2. im HTML Root-Element pro Framework
 3. Laden und User Input

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

3.5 Test-Tools
Lighthouse CLI

e State of the Art fur Web-
Performance

e Umfangreiche Sammlung an
Metriken

e Automatisierung von Tests

e Google Chrome

[4]

Andreas Nicklaus, 17.10.2024

Playwright

e Tests fur Content und
Interaktionen

e Custom Tests

e Injektion von Skripts
Black-Box-Testing

e Freie Browser-Wahl

[3]

16

https://developer.chrome.com/docs/lighthouse/overview
https://playwright.dev/
Note
1. erste Station Lighthouse
 1. Sammlung an Metriken
 2. CLI: Automatisierung
 3. techn. mögl.: andere Browser
 4. Google Produkt -> Headless Google Chrome
2. Playwright
 1. prim. Content & Interaktionen
 2. Custom Skripte im Browserfenster
 3. Black Box mögl. -> Unabhängig von Entwicklung
 4. Browserwahl

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Lighthouse
‘otal Byte Weight (TBW)

Playwright

DomContentLoaded

"ime To First Byte (TTFB)

loadEventEnd

‘ime To Interactive (TTI)

Mutation Times

‘'otal Blocking Time (TBT)

Largest Contentful Paint (LCP)

Observed First Visual Change (OFVC)

Observed Last Visual Change (OLVC)

Andreas Nicklaus, 17.10.2024

17

Note
- Lighthouse:
 - Aggregat
- Playwright:
 - Window-Kontext
 - Custom

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

3.6 Browser

e Google Chrome
e Mobile Chrome
e Chromium

e Microsoft Edge
e Firefox

e Desktop Safari

e Mobile Safari

[6]

Andreas Nicklaus, 17.10.2024

18

https://gs.statcounter.com/
Note
BROWSERS:
- Lighthouse nur Google Chrome
- Playwright Wahl nach Verbreitung

<VORLESEN>
<PAUSE>

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4. Ergebnisse

e Unschlussig fur PLT und CLT
o Ungleich verteilte Starken und Schwachen der Frameworks

o Undeutliche Tendenzen bzgl. Client-Side vs. Server-Side
Rendering

e Undeutlich far CUT
o Zeiten und Zeitspannen der DOM Mutations

o Durchschnittsranking von Frameworks und Browsern moglich

Andreas Nicklaus, 17.10.2024

19

Note
- Erkenntnisse vorwegnehmen -> richtige Augen

1. PLT und CLT unschlüssig für Frage
 1. Stärken und Schwächen
 2. undeutliche Bestlösung (CSR vs SSR)
2. CUT
 1. Tendenzen in Spannweite & Zeiten vom DOM Mutations
 1. Browser
 2. Frameworks

=]

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.1 Page Load Time - TTFB

timeToFirstByte

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular] Astro (mixed)

B Astro (duplicate) [Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte] Vue.js

1.200
1.000
800

2 600
400

200

VS EEEEEEEES

r /S S S
S

0

Andreas Nicklaus, 17.10.2024

S S S S S S S S S S
(S S S A

S
Vi EEEa

-1

VS EEEE

eed

N
\
\
\
\
\
\
\

Vi SEEEEEEd
r /S SSSS
Vi EEEEA
Vi EEEEd
S EEEEE

N
\
\
\
\
\
\
L!

=

y S S

bout

Page

S EEEEEEES

VS EEEEEE
VS EEA
S S S
NN EEE
VS EeA
r /7 /77 S S S
TSNS EEES

0

eate

N
iﬂ
RN
CNRRNN

RN
N
AR

ofile

o
—

20

Note
- lokal besser (nicht überraschend)
- Ausreißer:
 - Create & Profile: Astro
 - Feed: Angular, Next.js, Nuxt

=]

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.1 Page Load Time - TBW

totalbyteweight

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular] Astro (mixed)

B Astro (duplicate) [Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte] Vue.js

14.000.000

12.000.000

10.000.000

8.000.000

bytes

6.000.000

4.000.000

2.000.000

WS EEEEEEEEEEEE

VSN

VA4
v LSS S S S

VS SEEEEEEEEE.

0

Andreas Nicklaus, 17.10.2024

VAL EEEEEEE

About

Page

- |

Create

\
N
L

Proflle

21

Note
- große Diff. unter Framework
- gut: Next.js, Astro, Svelte
- schlecht
 - Feed: Angular, Vue.js
 - generell, Nuxt

=]

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.1 Page Load Time - TTI

interactive

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular] Astro (mixed)

B Astro (duplicate) [Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte] Vue.js

6.000

Profile

5.000
4.000
2 3.000
2.000

1.000

W EEEEEEEES

N
NN
MR
DR

/S L
S
Vs

Andreas Nicklaus, 17.10.2024 22

Note
- lokal schlechter (!!!)
- gut: Astro
- schlecht: Nuxt
- Abhängig v. Host & Seite: React und Svelte

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.1 Page Load Time - DomContentLoaded

observedDomContentLoaded

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular] Astro (mixed)

B Astro (duplicate) [Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte] Vue.js

900
800
700
600 E
E500 “ g
400 “ =
300 \‘, \
AW \
-~ iiiliﬂii I
100 LN
0 iiEi!EE!II IIIlIl
Feed

Andreas Nicklaus, 17.10.2024

N
E
ly
i N
\ ly
ly ly
\ |
L \ .
NN \ N\ N \
i ii ii i‘i \EE EE
VNN NN AR
L NNl SN
About Create Profile

23

Note
- lokal gut
- gut: React und Vue.js
- schlecht: Astro
 - statisch besser

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.2 Component Load Time - LoadEventEnd

loadEventEnd
B ot [Astro [Vuejs React |l Anguiar [Svelte [Nextjs
3000 ms
2500 ms e ©
o @
= §
= 2000 ms
£
Z 1500 ms
&) o .
=
= 1000 ms
un
=
° . o
500 ms ® ® . ° ®
L]
ﬂ‘. . | 2. & o _of e o v 1 "W L
0 ms %50, ¢ %o, o8 on, Y Ysn0p® % ol ol T T L
ik = at at = L=) ﬁ_g‘ﬂ-
o o™ e e el 5@ Joie 2 o™ L o O o Fe
wg‘ﬁ‘n ,DBE M Y'N{;E GOD%
Browser

Andreas Nicklaus, 17.10.2024

Note
- Ausreißer: Astro & Svelte in Firefox

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.2 Component Load Time - balanced
LoadEventEnd (1)

In Firefox werden Requests teilweise erst verspatet gemacht. Das

balanced LoadEventEnd nur misst die Zeit nach dem Requeststart.

load EventEndyyiuneced = loadEventEnd, ., — requestStart

Andreas Nicklaus, 17.10.2024

25

Note
- unerfindlicher Grund: requestStart spät in Firefox
- Lösung: balanced loadEventEnd

<Formel>

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.2 Component Load Time - LoadEventEnd

loadEventEnd
B ot [Astro [Vuejs React |l Anguiar [Svelte [Nextjs
3000 ms
2500 ms e ©
o @
= §
= 2000 ms
£
Z 1500 ms
&) o .
=
= 1000 ms
un
=
° . o
500 ms ® ® . ° ®
L]
ﬂ‘. . | 2. & o _of e o v 1 "W L
0 ms %50, ¢ %o, o8 on, Y Ysn0p® % ol ol T T L
ik = at at = L=) ﬁ_g‘ﬂ-
o o™ e e el 5@ Joie 2 o™ L o O o Fe
wg‘ﬁ‘n ,DBE M Y'N{;E GOD%
Browser

Andreas Nicklaus, 17.10.2024

Note
Alte Messwerte

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.2 Component Load Time - balanced
LoadEventEnd (2)

loadEventEnd (balanced)

B vuxt I Astro I Vuejs React I Anouizr [Svelte [Mextjs
1400 ms
L]
1200 ms N
S 1000 ms
m
S
E 800 ms
=
o °
D 500 ms ° o
[= .
£ 400 ms o
-
200 ms e Y e . o o o ® e '
e ® e o g% N o Bz _ofe
] L]
lail .l 'g. §8 “op "'l o8 Ill ';‘ '.I 'g. .. o
0Oms
ur® jat et Ao® . o0
oo W0 oo R ’ oo = ﬂ\@nﬁ"“i 509® oe© e
! G
Andreas Nicklaus, 17.10.2024 Browser

27

Note
Angeglichenen Werte

- einziger Unterscheid: Firefox
- Rest:
 - schlecht:
 - Angular
 - Chromium, Mobile Chrome, Microsoft Edge, Google Chrome
 - Astro
 - Desktop Safari, Mobile Safari

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.1 Page Load Time - OLVC

observedLastVisualChange

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular] Astro (mixed)

B Astro (duplicate) [Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte] Vue.js
7.000

6.000
5.000

4.000

ms

3.000

2.000

1.000

"

\
i
\
\
\
i
\

VS
VST ee
EEEEEEEE
S]

VS ESEEEEEEEEL
Y S S S S S S S

7

S

N
\
N
N
N
\
N

!EIIII U1 T T\ 1\ I ‘!-“III.I- ||||||

Feed About Create Profile
Page

/)
Ve
v /77
V.

o

Andreas Nicklaus, 17.10.2024

=]

28

Note
1. starke Ausreißer von Nuxt auf der Feed
2. Profile: Chained Async Funktionen.

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.2 Component Load Time - OFVC

observedFirstVisualChange

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular] Astro (mixed)

B Astro (duplicate) [Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte] Vue.js

700
600 E
Ny
500 i
400 i
E 300 E ‘ N
R B
N N N VW Al Naa
200 N 8 SN AN
LU S
BN R NN
; R II||I|I| RN T Y T |I|
Feed Abou Create Profile
Page
Andreas Nicklaus, 17.10.2024 29

=]

Note
- Outlier, aber lokal deutlich besser
 - in OLVC nicht sichtbar
- interessant: Unterschied

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.2 Component Load Time - OVCD

First und Last Visual Change umfassen auch die Datenubertragungs-
zeit. Die Observed Visual Change Duration beschreibt die Zeit
zwischen Anfang und Ende der visuellen Anderungen.

observedVisualChangeDuration = OLVC — OFVC(C

Andreas Nicklaus, 17.10.2024 30

Note
- OFCV und OLVC beinhalten Netzwerkzeiten
- dazwischen Render-Geschwindigkeit im Browser

Gleichung

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.1 Page Load Time - OLVC

observedLastVisualChange

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular] Astro (mixed)

B Astro (duplicate) [Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte] Vue.js
7.000

6.000
5.000

4.000

ms

3.000

2.000

1.000

"

\
i
\
\
\
i
\

VS
VST ee
EEEEEEEE
S]

VS ESEEEEEEEEL
Y S S S S S S S

7

S

N
\
N
N
N
\
N

!EIIII U1 T T\ 1\ I ‘!-“III.I- ||||||

Feed About Create Profile
Page

/)
Ve
v /77
V.

o

Andreas Nicklaus, 17.10.2024

=]

31

Note
OLVC

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.2 Component Load Time - OVCD

observedVisualChangeDuration

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular] Astro (mixed)

B Astro (duplicate) [Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte] Vue.js

6.000
NN —]

Feed About Create Profile
Path

5.000
4.000
2 3.000
2.000

1.000

VS EEEEEEEEEEEL

7

SRS

§
N
N
N
N
N
g
0

/S

]
S
VS EEEEEL
AN

S S S S S S S S S
Ve ee
SRS
VS

vl

0

Andreas Nicklaus, 17.10.2024

32

Note
OVCD

- hat nicht viel gebracht
 - OFVC relativ kurz
- Idee kann verbessert werden

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

DOM Mutation Times

e Component Load Times e Component Update Times

Andreas Nicklaus, 17.10.2024

33

Note
- Laden & Updaten der Seite
- CLT und CUT

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Aufzeichnung

Andreas Nicklaus, 17.10.2024

Recording-Script

?

[Injecten Skript]

Y

[Registrieren Startzeit]

——

[@ Warten 100 ms]

Y

[Root-Element

Root-El t
existiert nicht] [Root-Elemen

gefunden]

[Initialisieren LoadTimes]

v

loadTimes
[leer]

v

Window

¢ |
Initialisieren ’
MutationObserver
v

MutationObserver
[initialisiert]

P

A

4

loadTimes

[Veroffentlichen

DOM

?

[Andern DOM

)

Ly

[Speichern der Mutations]

A
loadTimes
[geflllt]

[

34

Note
1. Injection
2. Intervall
3. loadtimes
4. MutationObserver
5. DOM Mutation (id, xpath, Zeit -> Window-Kontext)

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Playwright Browser / Window

Nutzung ¢

[Injecten Skript]

A

[Aufrufen Seiten]

Playwright Browser / Window i
? G Warten 3 s [Laden Seite]

[Injecten Skript] ¥
[Mutieren DOM]

[Aufrufer; Seiten| Ioad'll'imes

J'_ [geflillt]

[Zur[]cksetzen IoadTimes]

|
& \;Varten 105 | Laden Seite | %'— [loadTimes
v T [leer]

[Mutieren DOM] [Ausfiihren Interaktion]
loadTimes v
[gefillt] GWarten 5 s [Mutieren DOM]
v
[Auswerten loadTimes] loadTimes

‘ [gefullt]

[Auswerten loadTimes]

¢

Andreas Nicklaus, 17.10.2024

Note
1. Seiten Laden
 1. 10 Sekunden warten
 2. Auswerten
2. User Interaction
 1. gleicher Prozess
 2. Reset
 3. Interaktion
 4. Warten

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.2 Component Load Times - DOM Mutations

Component load mutation times

B nuxt [Astro I Vuejs React |l Angular | Svelte | Nexijs
2000 ms

1800 ms B

1600 ms

1400 ms L
1200 ms

1000 ms l l _
|

800 ms

ms until DOM mutation

600 ms $. 3]

400 ms e, S,
sooms | * » %8 .. . % $

0 ms

-1 N

e o ®
o ue

x

il
. 208

e e aur®

Wﬂﬁﬁe ﬂa&"ﬁ""@p cne©

e o
oo @xﬁiaau 008"

Browser
Andreas Nicklaus, 17.10.2024

Note
Ergebnis:
1. schlechter: Next.js, Svelte
2. Unterschiede in Browsern
3. Aufzeichnungen fehlen
 1. Frameworks fehlen
 2. Grenze bei 100 ms

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.2 Component Load Times - DOM Mutations

o /wei Aufzeichnungsgrenzen
o Initialisierungsintervall von 100 ms
o festes Ende nach 10 s

e Fehlende Aufzeichnungen

o Schnelle Updates beim Laden des DOMs

o Langsame Updates nach Ende der Aufzeichnung

Andreas Nicklaus, 17.10.2024

37

Note
- 2 Aufzeichnungsgrenzen (Init & Ende)
 - 100 ms Intervall für Erkennung Root Element
 - 10 Sekunden bis Ende
- Fehlend:
 - direkt nach Ladebeginn
 - länger als 10 Sekunden

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.3 Component Update Times

Notlnstagram

1. Caption Insert
E—— 2. Media Selection

3. Source Insert

4. Post Creation (1. & 2.)

O likes

Nothing to see yet...

Insert a #caption to continue!
Just now

Andreas Nicklaus, 17.10.2024

Note
- 4 User Actions: Formular -> Vorschau
- Caption
- Dropdown
- URL
- Caption + Dropdown

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.3 Component Update Times

Framework Reaction Times

I Cchromium [l Mobile Chrome Google Chrome [Microsoft Edge [l Firefox [l Mobile Safari
B Ceskiop Safari
600 ms
o
200 ms
[
=
o
5 400ms "
2 "
2 300ms
(] L
5 . .
3 200 ms - . .
E » [] L]
.

100 ms o* ooh o’ ol .I . . s s 0e
e b e qﬁl ¢ -[i e .F! og 0880 . 'l..
opne®t LD gece fep U " H LU

0 ms
MNuxt Astro Vue s React Angular Svelte Next js
Framework

Andreas Nicklaus, 17.10.2024 39

Note
1. gut: Nuxt (max. 200 unabhängig vom Browser)
2. langsam: Next.js (Firefox, Mobile Safari, Desktop Safari)
3. schnell:
 1. Chromium, Mobile Chrome, Google Chrome, ME
 2. Render-Engine Blink

<PAUSE>

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.3 Component Update Times - Messungen

Nuxt Angular Vue.js React Astro Svelte Next.js (7))

Desktop Safari 86 123 136 169 170 164 304 | 164
124 172 200 280 270 283 493 | 260

47 52 52 67 78 56 73| 61

Mobile Safari 110 106 133 126 154 126 196 | 136
167 152 206 183 254 208 372|220

59 54 52 54 63 60 59| 57

Firefox 83 89 82 84 99 94 142 | 96
108 123 103 181 142 129 235 | 146

Andreas Nicklaus, 17.10.2024

40

Note
- Min., Max., Durchschnitt
- rot: schlechteste Werte
- langsamste Browser
- gut: Nuxt (Ausnahmen)
- schlecht: Next.js (Ausnahmen)

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.3 Component Update Times - Messungen

Angular Vue.js

React Astro

Svelte Next.js

Mobile Chrome 61 67 69 67 69 81 94 |73
82 90 89 82 85 116 143 | 98
39 44 51 44 51 38 47 | 45
Chromium 66 69 77 58 71 74 7570
924 95 104 85 89 95 108 | 96

Andreas Nicklaus, 17.10.2024

41

Note
- ähnlich
- mittlere Plätze umkämpft / Framework ungefähr gleich

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.3 Component Update Times - Messungen

Nuxt Angular Vue.js

React Astro Svelte

Microsoft Edge 61 70 61 62 64 74 73 | 67
85 90 79 75 80 102 134 | 93
34 41 37 40 43 39 41 | 39
Google Chrome 60 62 61 59 57 64 69 | 62
77 84 77 77 72 89 99 | 82

Andreas Nicklaus, 17.10.2024

42

Note
- schnellste Browser: ME, Google Chrome
- grün: schnellste Werte
 - Astro war schon schlechtester Minimalwert

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.3 Component Update Times - Messungen

Angular Vue.js

React Astro Svelte Next.js

Browser Average 75 84 88 89 98 97 136
105 115 123 138 142 146 226

35 45 36 45 48 42 45

Weighted Browser Average 60 69 70 75 74 78 107
80 94 93 110 104 118 167

Andreas Nicklaus, 17.10.2024

43

Note
- Durchschnitt -> Ranking
- Rein:
 - 1: Nuxt
 - 2: Angular
 - 3: Vue.js, React
 - 5: Astro, Svelte
 - 7: Nex.js
- Weighted nach Nutzungsquote
 - 1: Nuxt
 - 2: Angular, Vue.js
 - 4: React, Astro
 - 6: Svelte
 - 7: Next.js

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.3 Component Update Times - Ranking

Frameworks Browsers

1. Nuxt 1. Google Chrome
2. Angular 2. Microsoft Edge
3. Vue.js 3. Chromium

4. React 4. Mobile Chrome
5. Astro / Svelte 5. Firefox

6. Next.js 6. Mobile Safari

/. Desktop Safari

Andreas Nicklaus, 17.10.2024

Note
Rankings:

<VORLESEN>

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

5. Lessons Learned

1. Ergebnisse

2. Methodik
3. Test-Ansatz fur DOM-Mutationen

Andreas Nicklaus, 17.10.2024

45

Note
- Zusammenfassung
- kritische Worte zu
 - Ergebnissen
 - Herangehensweise
 - Test-Ansätze zu DOM Mutations

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

5.1 Ergebnisse

o Testergebnisse sind nicht eindeutig bzgl. Page Load Times und
Component Load Times.

e Component Update Times zeigen undeutliche Tendenzen auf.

CUT:

e Frameworks: @ 69 - 107 ms
e Browsers: @ 62 - 164 ms

Andreas Nicklaus, 17.10.2024

46

Note
- Ergebnisse nicht ausreichen zu Antwort in PLT und CLT
- CUT: Tendenzen zu Performance-Unterschied
- Frameworks: Ø 69 - 107 ms
- Browsers: Ø 62 - 164 ms
- größerer Unterschied erhofft und erwartet

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

5.2 Methodik

e Messergebnisse schwanken um bis zu 30%

e Verteilung der Ergebnisse konnte Performanceunterschiede
aufzeigen

e Testumfang muss ausgeweitet werden
o Seiten
o Komponenten
o Hosting Services

o Test Runs

Andreas Nicklaus, 17.10.2024

47

Note
- Lücken in meiner Forschung
- Lighthouse schwankt um 30%
 - Verteilung interessanter
- Mehr Datenpunkte
 - Seiten & -arten
 - Komponenten & -funktionen
 - Hosting Möglichkeiten
 - Test Runs & zu Tageszeiten für Network Delay

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

5.3 Test-Ansatz fiir DOM-Mutationen

e Aufzeichnungen von DOM-Mutationen fehlen am Anfang und Ende
der Tests

e White-Box Testing, um...
o Aufzeichnungen zu triggern und...

o Rendering-Ende zu signalisieren

e keine Tests zu Navigation zwischen Seiten

Andreas Nicklaus, 17.10.2024

48

Note
- Verbesserungsmöglichkeiten

1. fehlende Aufzeichnungen
 1. Black-Box vergessen -> White-Box
 2. Events am Anfang und Ende von Änderungen
 1. Initialisierung signalisieren
 2. Ende von State-Change signalisieren
2. Navigation zwischen Seiten

<PAUSE>

Dankeschon!

Mega-fast or just super-fast? Performance differences of
mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 44835

17.10.2024

Note
- Vorbereitete Antworten
- gerne unvorbereitete Antworten geben

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Anhang

Andreas Nicklaus, 17.10.2024

50

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Referenzen

[1] https://www.scribd.com/document/471812575/A-website

[2] https://2023.stateofjs.com/en-US/libraries/front-end-
frameworks/

3] https://vercel.com/
https://developer.chrome.com/docs/lighthouse/overview
nttps://playwright.dev/

nttps://gs.statcounter.com/

ENGRES

Andreas Nicklaus, 17.10.2024

51

https://www.scribd.com/document/471812575/A-website
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://vercel.com/
https://developer.chrome.com/docs/lighthouse/overview
https://playwright.dev/
https://gs.statcounter.com/

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Abkurzungsverzeichnis

Abkilirzung Bedeutung

Abkiirzung Bedeutung

Cl/CD Continuous Integration and Continuous OLVC Observed Last Visual Change
Delivery OFVC Observed First Visual Change

CSR Client-Side Rendering oveD Observed Visual Change

DOM Document Object Model Duration

FVC First Visual Change SSR Server-Side Rendering

HTML Hypertext Markup Language TBT Total Blocking Time

JS JavaScript TBW Total Byte Weight

LCP Largest Contentful Paint TTFB Time To First Byte

LVC Last Visual Change TTI Time To Interactive

Andreas Nicklaus, 17.10.2024

52

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.1 Page Load Time - TBT

totalBlockingTime

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular] Astro (mixed)

B Astro (duplicate) [Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte] Vue.js
350

300
250
200
150
100

50

]

NN I
SEE ! III = _] A\

Feed About Create Profile
Page

ms
V A
'””””””””ﬂ

e
e

o

Andreas Nicklaus, 17.10.2024

Note
- Hosting irrelevant
- schlecht: Astro, Next.js

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.1 Page Load Time - LCP

largestContentfulPaint

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular] Astro (mixed)

B Astro (duplicate) [Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte] Vue.js

8.000
“‘|II|“
W

bout Create Profile

7.000
6.000
5.000

2 4.000
3.000
2.000

1.000

ViV

\
\
\
\
\
\
\
\
\\
\
A

/S S
(/S
' 7S S S S/

[

Feed A

Andreas Nicklaus, 17.10.2024 54

Note
- lokal schlechter
- schlecht: Angular und Next.js

	Page 1
	Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

	Page 2
	Agenda

	Page 3
	1. Themenübersicht

	Page 4
	Page 5
	2. Fragestellung

	Page 6
	2. Fragestellung

	Page 7
	2. Fragestellung

	Page 8
	2. Fragestellung

	Page 9
	3. Lösungsstrategie und -design

	Page 10
	3.1 Frameworks

	Page 11
	3.2 Beispielanwendung

	Page 12
	3.3 Hosting-Umgebung
	Vercel [3]
	Localhost

	Page 13
	3.4 Metriken

	Page 14
	Page 15
	Page 16
	3.5 Test-Tools
	Lighthouse CLI
	Playwright

	Page 17
	Page 18
	3.6 Browser

	Page 19
	4. Ergebnisse

	Page 20
	4.1 Page Load Time - TTFB

	Page 21
	4.1 Page Load Time - TBW

	Page 22
	4.1 Page Load Time - TTI

	Page 23
	4.1 Page Load Time - DomContentLoaded

	Page 24
	4.2 Component Load Time - LoadEventEnd

	Page 25
	4.2 Component Load Time - balanced LoadEventEnd (1)

	Page 26
	4.2 Component Load Time - LoadEventEnd

	Page 27
	4.2 Component Load Time - balanced LoadEventEnd (2)

	Page 28
	4.1 Page Load Time - OLVC

	Page 29
	4.2 Component Load Time - OFVC

	Page 30
	4.2 Component Load Time - OVCD

	Page 31
	4.1 Page Load Time - OLVC

	Page 32
	4.2 Component Load Time - OVCD

	Page 33
	DOM Mutation Times

	Page 34
	Aufzeichnung

	Page 35
	Nutzung

	Page 36
	4.2 Component Load Times - DOM Mutations

	Page 37
	4.2 Component Load Times - DOM Mutations

	Page 38
	4.3 Component Update Times

	Page 39
	4.3 Component Update Times

	Page 40
	4.3 Component Update Times - Messungen

	Page 41
	4.3 Component Update Times - Messungen

	Page 42
	4.3 Component Update Times - Messungen

	Page 43
	4.3 Component Update Times - Messungen

	Page 44
	4.3 Component Update Times - Ranking
	Frameworks
	Browsers

	Page 45
	5. Lessons Learned

	Page 46
	5.1 Ergebnisse

	Page 47
	5.2 Methodik

	Page 48
	5.3 Test-Ansatz für DOM-Mutationen

	Page 49
	Dankeschön!

	Page 50
	Anhang

	Page 51
	Referenzen

	Page 52
	Abkürzungsverzeichnis

	Page 53
	4.1 Page Load Time - TBT

	Page 54
	4.1 Page Load Time - LCP

