
Mega-fast or just super-fast?
Performance differences of

mainstream JavaScript frameworks
for web applications

Andreas Nicklaus
17.10.2024

Note
- Dankeschön
 - präsentieren zu dürfen
 - Zeit, in Präsenz
- Titel
 - Performance-Unterschiede in Endprodukten

Agenda

1. Themenübersicht

2. Fragestellung

3. Lösungsstrategie und -design

4. Ergebnisse

5. Lessons Learned

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 2

Note
1. Thema einführen + Tiefe
2. Fragestellung für heute
3. Strategien zur Beantwortung + erklärende Worte zu Design
4. wichtige Ergebnisse: graphisch + Zahlen für Interpretation
5. 5 Minuten Lessons Learned für weitere Arbeiten

<PAUSE>

1. Themenübersicht

HTML

JS CSS

Multimedia

Renderer
(Browser) Display

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Websites are made up of files written in HTML and CSS that are
rendered and displayed in web browsers. They can be static, with
pre-defined content, or dynamic, changing automatically based
on user input or other factors. [1]

“

“

Andreas Nicklaus, 17.10.2024 3

https://www.scribd.com/document/471812575/A-website
Note
- gefundene Definition
- moderne Webseiten
 - other factors -> JS
 - statisch und dynamisch
 - Komplexität
 - Vorhersehbarkeit der Performance
- Diagram
 - dynamische: +Nutzer, +Netzwerk, +Services (Backend, DB, APIs)
 - viele Faktoren
 - Probleme -> langsamster Pfad

Renderer
(Browser) Display

Webserver

Multimedia

CSS

JS

HTMLFramework

Page

Component

HTML

JS

CSS

Multimedia

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 4

Note
- Für Entwickler schwieriger
- Pfad rechts aufwendig
- Pfad links fast unmöglich
- Hoffnung: Foren für gewähltes Framework
- -> Frage nach bestem Framework

2. Fragestellung

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Hat die Wahl des Frameworks einen für den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

“

“

Andreas Nicklaus, 17.10.2024 5

Note
Oder anders formuliert: <VORLESEN>

- 3 Aspekte herausstellen

2. Fragestellung

Framework

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Hat die Wahl des Frameworks einen für den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

“

“

Andreas Nicklaus, 17.10.2024 6

Note
1. Framework
 1. Entwicklungs-Framework
 2. nicht einfach & gut konfigurierbar, sondern as is

2. Fragestellung

Framework

für den Nutzer merklich

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Hat die Wahl des Frameworks einen für den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

“

“

Andreas Nicklaus, 17.10.2024 7

Note
2. für den Nutzer merklichen Einfluss
 1. unterschiedlich
 2. technisch vs wahrgenommen
 3. Zeiten unter 30ms ignorieren

2. Fragestellung

Framework

für den Nutzer merklich

Render-Geschwindigkeit

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Hat die Wahl des Frameworks einen für den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

“

“

Andreas Nicklaus, 17.10.2024 8

Note
3. Render-Geschwindigkeit
 1. viel Facetten -> Tendenzen
 2. Beispiel: schnelle erste Änderung, späte letzte Änderung

<PAUSE>

3. Lösungsstrategie und -design

1. Frameworks

2. Anwendung: Seiten, Komponenten und Content

3. Hosting-Umgebung

4. Metriken & Untersuchungsgegenstand

5. Test-Tools

6. Browser

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 9

Note
- Versuch der Antwort -> 6 Dimensionen eingegrenzt
1. Frameworks
2. Anwendung: Bündelung, wiederverwendbare Ressourcen
3. Network Delay -> Hosting-Umgebung
4. Metriken beschreiben Untersuchungs-Gegenstand
5. Werkzeuge: Overhead -> -Performance
6. Browser

3.1 Frameworks

CSR SSR

Angular Astro

React Next.js

Vue.js Nuxt

Svelte

Entscheidungskriterien: [2]

Nutzungsquote

Empfehlungsrate

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 10

https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
Note
FRAMEWORKS:
- CSR und SSR vorlesen
 - Big 3
 - Liebling Astro
- Wahl:
 - vergangene Nutzung
 - Bereitschaft zu Nutzung
 - Neigung unter Entwicklern mit Erfahrung im Framework
- Bewusst CSR UND SSR

3.2 Beispielanwendung

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 11

Note
- Vergleich bedarf gleicher Umstände
 - sonst max. 2 Frameworks
- Nachbildung der App Instagram
- 4 Seiten
- Delayed vs statisch
- Create: Spezialfall -> Dynamisch
- Komponenten: Wrapper und Funktionen
 - Möglichkeit für un-konfigurierte Performanceoptimierung

3.3 Hosting-Umgebung

Vercel [3]

Network Delay

Kostenloses Konto

CI/CD Integration

Localhost

Reine Render-Geschwindigkeit

serve oder Framework Preview

Baseline ohne Netzwerkverzögerung

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 12

https://vercel.com/
Note
HOSTING:
1. Anbieter
 1. Realistische Netzwerkverzögerung + Serverauslastung
 2. SSR-Funktionen
 3. kostenlos -> kleine Projekte
 4. Github + Github Actions
 5. Verbreitet
 6. Mit Netzwerkanfragen untersucht
2. Localhost
 1. ohne Netzwerkverzögerung
 2. Preview oder serve
 3. Baseline für Browser-Prozesse

3.4 Metriken

3 Kategorien zur besseren Unterteilung:

Page Load Time (PLT)

Component Load Time (CLT)

Component Update Time (CUT)

PLT

CLT CUT

trequest start

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 13

Note
METRIKEN:
- 3 Kategorien
- PLT
 - klassische PLT
 - requeststart bis DomContentLoaded
- CLT
 - Prozesse im Browser ohne...
 - Netzwerk
 - Serveraktivitäten (SSR)
 - Baseline für Browserprozesse
- Component Update Time
 - Reaktion auf Eingaben
 - Nutzereingaben
 - Websocket Nachrichten
 - nach PLT und CLT

PLT CLT CUT

Total Byte Weight x

Time To First Byte x

DomContentLoaded x

Last Visual Change x

Largest Contentful Paint x

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 14

Note
- Kategorien zuweisen (nur PLT)

1. TBW: Netzwerk-Bytes
2. TTFB: requestStart bis erstes Antwortbyte
3. DomContentLoaded: requestStart bis DOM geladen
4. LVC: letzte sichtbare Änderung im Viewport
5. LCP: Renderzeit des größten Element im Viewport -> empfundene Ladezeit

PLT CLT CUT

Time To Interactive x x

Total Blocking Time x x

LoadEventEnd x x

Observed First Visual Change x

Observed Last Visual Change x

DOM Mutation Times x x

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 15

Note
1. TTI: requestStart bis DOM "interactive"
2. TBT: von Nutzereingaben abgehalten (Code / Parsing)
3. LoadEventEnd: requestStart bis OnLoad des DOM

4. OFVC und OLVC: requestStart bis visuelle Änderung im Viewport
5. DOM Mutations
 1. nicht bekannt
 2. im HTML Root-Element pro Framework
 3. Laden und User Input

3.5 Test-Tools

Lighthouse CLI

State of the Art für Web-
Performance

Umfangreiche Sammlung an
Metriken

Automatisierung von Tests

Google Chrome

[4]

Playwright

Tests für Content und
Interaktionen

Custom Tests

Injektion von Skripts
 Black-Box-Testing

Freie Browser-Wahl

[5]

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 16

https://developer.chrome.com/docs/lighthouse/overview
https://playwright.dev/
Note
1. erste Station Lighthouse
 1. Sammlung an Metriken
 2. CLI: Automatisierung
 3. techn. mögl.: andere Browser
 4. Google Produkt -> Headless Google Chrome
2. Playwright
 1. prim. Content & Interaktionen
 2. Custom Skripte im Browserfenster
 3. Black Box mögl. -> Unabhängig von Entwicklung
 4. Browserwahl

Lighthouse Playwright

Total Byte Weight (TBW) DomContentLoaded

Time To First Byte (TTFB) loadEventEnd

Time To Interactive (TTI) Mutation Times

Total Blocking Time (TBT)

Largest Contentful Paint (LCP)

Observed First Visual Change (OFVC)

Observed Last Visual Change (OLVC)

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 17

Note
- Lighthouse:
 - Aggregat
- Playwright:
 - Window-Kontext
 - Custom

3.6 Browser

Google Chrome

Mobile Chrome

Chromium

Microsoft Edge

Firefox

Desktop Safari

Mobile Safari

[6]

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 18

https://gs.statcounter.com/
Note
BROWSERS:
- Lighthouse nur Google Chrome
- Playwright Wahl nach Verbreitung

<VORLESEN>
<PAUSE>

4. Ergebnisse

Unschlüssig für PLT und CLT

Ungleich verteilte Stärken und Schwächen der Frameworks

Undeutliche Tendenzen bzgl. Client-Side vs. Server-Side
Rendering

Undeutlich für CUT

Zeiten und Zeitspannen der DOM Mutations

Durchschnittsranking von Frameworks und Browsern möglich

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 19

Note
- Erkenntnisse vorwegnehmen -> richtige Augen

1. PLT und CLT unschlüssig für Frage
 1. Stärken und Schwächen
 2. undeutliche Bestlösung (CSR vs SSR)
2. CUT
 1. Tendenzen in Spannweite & Zeiten vom DOM Mutations
 1. Browser
 2. Frameworks

4.1 Page Load Time - TTFB

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 20

Note
- lokal besser (nicht überraschend)
- Ausreißer:
 - Create & Profile: Astro
 - Feed: Angular, Next.js, Nuxt

4.1 Page Load Time - TBW

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 21

Note
- große Diff. unter Framework
- gut: Next.js, Astro, Svelte
- schlecht
 - Feed: Angular, Vue.js
 - generell, Nuxt

4.1 Page Load Time - TTI

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 22

Note
- lokal schlechter (!!!)
- gut: Astro
- schlecht: Nuxt
- Abhängig v. Host & Seite: React und Svelte

4.1 Page Load Time - DomContentLoaded

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 23

Note
- lokal gut
- gut: React und Vue.js
- schlecht: Astro
 - statisch besser

4.2 Component Load Time - LoadEventEnd

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 24

Note
- Ausreißer: Astro & Svelte in Firefox

4.2 Component Load Time - balanced
LoadEventEnd (1)

In Firefox werden Requests teilweise erst verspätet gemacht. Das
balanced LoadEventEnd nur misst die Zeit nach dem Requeststart.

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 25

Note
- unerfindlicher Grund: requestStart spät in Firefox
- Lösung: balanced loadEventEnd

<Formel>

4.2 Component Load Time - LoadEventEnd

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 26

Note
Alte Messwerte

4.2 Component Load Time - balanced
LoadEventEnd (2)

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 27

Note
Angeglichenen Werte

- einziger Unterscheid: Firefox
- Rest:
 - schlecht:
 - Angular
 - Chromium, Mobile Chrome, Microsoft Edge, Google Chrome
 - Astro
 - Desktop Safari, Mobile Safari

4.1 Page Load Time - OLVC

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 28

Note
1. starke Ausreißer von Nuxt auf der Feed
2. Profile: Chained Async Funktionen.

4.2 Component Load Time - OFVC

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 29

Note
- Outlier, aber lokal deutlich besser
 - in OLVC nicht sichtbar
- interessant: Unterschied

4.2 Component Load Time - OVCD

First und Last Visual Change umfassen auch die Datenübertragungs-
zeit. Die Observed Visual Change Duration beschreibt die Zeit
zwischen Anfang und Ende der visuellen Änderungen.

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 30

Note
- OFCV und OLVC beinhalten Netzwerkzeiten
- dazwischen Render-Geschwindigkeit im Browser

Gleichung

4.1 Page Load Time - OLVC

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 31

Note
OLVC

4.2 Component Load Time - OVCD

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 32

Note
OVCD

- hat nicht viel gebracht
 - OFVC relativ kurz
- Idee kann verbessert werden

DOM Mutation Times

Component Load Times Component Update Times

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 33

Note
- Laden & Updaten der Seite
- CLT und CUT

Aufzeichnung

[Root-Element
gefunden]

Initialisieren
MutationObserver

loadTimes
[leer]

Veröffentlichen
loadTimes Ändern DOM

Speichern der Mutations

loadTimes
[gefüllt]

MutationObserver
[initialisiert]

Recording-Script Window DOM

Registrieren Startzeit

Initialisieren LoadTimes

loadTimes
[leer]

[Root-Element
existiert nicht]

Warten 100 ms

Injecten Skript

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 34

Note
1. Injection
2. Intervall
3. loadtimes
4. MutationObserver
5. DOM Mutation (id, xpath, Zeit -> Window-Kontext)

Nutzung

Injecten Skript

Playwright Browser / Window

loadTimes
[gefüllt]

Warten 10 s

Aufrufen Seiten

Laden Seite

Mutieren DOM

Auswerten loadTimes

Injecten Skript

Playwright Browser / Window

loadTimes
[gefüllt]

Warten 3 s

Aufrufen Seiten

Laden Seite

Mutieren DOM

Zurücksetzen loadTimes

loadTimes
[gefüllt]

Mutieren DOM

Ausführen Interaktion

loadTimes
[leer]

Auswerten loadTimes

Warten 5 s

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 35

Note
1. Seiten Laden
 1. 10 Sekunden warten
 2. Auswerten
2. User Interaction
 1. gleicher Prozess
 2. Reset
 3. Interaktion
 4. Warten

4.2 Component Load Times - DOM Mutations

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 36

Note
Ergebnis:
1. schlechter: Next.js, Svelte
2. Unterschiede in Browsern
3. Aufzeichnungen fehlen
 1. Frameworks fehlen
 2. Grenze bei 100 ms

4.2 Component Load Times - DOM Mutations

Zwei Aufzeichnungsgrenzen

Initialisierungsintervall von 100 ms

festes Ende nach 10 s

Fehlende Aufzeichnungen

Schnelle Updates beim Laden des DOMs

Langsame Updates nach Ende der Aufzeichnung

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 37

Note
- 2 Aufzeichnungsgrenzen (Init & Ende)
 - 100 ms Intervall für Erkennung Root Element
 - 10 Sekunden bis Ende
- Fehlend:
 - direkt nach Ladebeginn
 - länger als 10 Sekunden

4.3 Component Update Times

1. Caption Insert

2. Media Selection

3. Source Insert

4. Post Creation (1. & 2.)

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 38

Note
- 4 User Actions: Formular -> Vorschau
- Caption
- Dropdown
- URL
- Caption + Dropdown

4.3 Component Update Times

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 39

Note
1. gut: Nuxt (max. 200 unabhängig vom Browser)
2. langsam: Next.js (Firefox, Mobile Safari, Desktop Safari)
3. schnell:
 1. Chromium, Mobile Chrome, Google Chrome, ME
 2. Render-Engine Blink

<PAUSE>

4.3 Component Update Times - Messungen

ms Nuxt Angular Vue.js React Astro Svelte Next.js Ø

51 77 47 84 87 70 79 71

Desktop Safari 86 123 136 169 170 164 304 164

124 172 200 280 270 283 493 260

47 52 52 67 78 56 73 61

Mobile Safari 110 106 133 126 154 126 196 136

167 152 206 183 254 208 372 220

59 54 52 54 63 60 59 57

Firefox 83 89 82 84 99 94 142 96

108 123 103 181 142 129 235 146

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 40

Note
- Min., Max., Durchschnitt
- rot: schlechteste Werte
- langsamste Browser
- gut: Nuxt (Ausnahmen)
- schlecht: Next.js (Ausnahmen)

4.3 Component Update Times - Messungen

ms Nuxt Angular Vue.js React Astro Svelte Next.js Ø

42 44 46 44 49 45 47 45

Mobile Chrome 61 67 69 67 69 81 94 73

82 90 89 82 85 116 143 98

39 44 51 44 51 38 47 45

Chromium 66 69 77 58 71 74 75 70

94 95 104 85 89 95 108 96

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 41

Note
- ähnlich
- mittlere Plätze umkämpft / Framework ungefähr gleich

4.3 Component Update Times - Messungen

ms Nuxt Angular Vue.js React Astro Svelte Next.js Ø

37 43 40 41 44 40 46 42

Microsoft Edge 61 70 61 62 64 74 73 67

85 90 79 75 80 102 134 93

34 41 37 40 43 39 41 39

Google Chrome 60 62 61 59 57 64 69 62

77 84 77 77 72 89 99 82

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 42

Note
- schnellste Browser: ME, Google Chrome
- grün: schnellste Werte
 - Astro war schon schlechtester Minimalwert

4.3 Component Update Times - Messungen

ms Nuxt Angular Vue.js React Astro Svelte Next.js

44 51 46 53 59 50 56

Browser Average 75 84 88 89 98 97 136

105 115 123 138 142 146 226

35 45 36 45 48 42 45

Weighted Browser Average 60 69 70 75 74 78 107

80 94 93 110 104 118 167

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 43

Note
- Durchschnitt -> Ranking
- Rein:
 - 1: Nuxt
 - 2: Angular
 - 3: Vue.js, React
 - 5: Astro, Svelte
 - 7: Nex.js
- Weighted nach Nutzungsquote
 - 1: Nuxt
 - 2: Angular, Vue.js
 - 4: React, Astro
 - 6: Svelte
 - 7: Next.js

4.3 Component Update Times - Ranking

Frameworks

1. Nuxt

2. Angular

3. Vue.js

4. React

5. Astro / Svelte

6. Next.js

Browsers

1. Google Chrome

2. Microsoft Edge

3. Chromium

4. Mobile Chrome

5. Firefox

6. Mobile Safari

7. Desktop Safari

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 44

Note
Rankings:

<VORLESEN>

5. Lessons Learned

1. Ergebnisse

2. Methodik

3. Test-Ansatz für DOM-Mutationen

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 45

Note
- Zusammenfassung
- kritische Worte zu
 - Ergebnissen
 - Herangehensweise
 - Test-Ansätze zu DOM Mutations

5.1 Ergebnisse

Testergebnisse sind nicht eindeutig bzgl. Page Load Times und
Component Load Times.

Component Update Times zeigen undeutliche Tendenzen auf.

CUT:

Frameworks: Ø 69 - 107 ms

Browsers: Ø 62 - 164 ms

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 46

Note
- Ergebnisse nicht ausreichen zu Antwort in PLT und CLT
- CUT: Tendenzen zu Performance-Unterschied
- Frameworks: Ø 69 - 107 ms
- Browsers: Ø 62 - 164 ms
- größerer Unterschied erhofft und erwartet

5.2 Methodik

Messergebnisse schwanken um bis zu 30%

Verteilung der Ergebnisse könnte Performanceunterschiede
aufzeigen

Testumfang muss ausgeweitet werden

Seiten

Komponenten

Hosting Services

Test Runs

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 47

Note
- Lücken in meiner Forschung
- Lighthouse schwankt um 30%
 - Verteilung interessanter
- Mehr Datenpunkte
 - Seiten & -arten
 - Komponenten & -funktionen
 - Hosting Möglichkeiten
 - Test Runs & zu Tageszeiten für Network Delay

5.3 Test-Ansatz für DOM-Mutationen

Aufzeichnungen von DOM-Mutationen fehlen am Anfang und Ende
der Tests

White-Box Testing, um...

Aufzeichnungen zu triggern und...

Rendering-Ende zu signalisieren

keine Tests zu Navigation zwischen Seiten

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 48

Note
- Verbesserungsmöglichkeiten

1. fehlende Aufzeichnungen
 1. Black-Box vergessen -> White-Box
 2. Events am Anfang und Ende von Änderungen
 1. Initialisierung signalisieren
 2. Ende von State-Change signalisieren
2. Navigation zwischen Seiten

<PAUSE>

Dankeschön!

Mega-fast or just super-fast? Performance differences of
mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 44835

17.10.2024

Note
- Vorbereitete Antworten
- gerne unvorbereitete Antworten geben

Anhang

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 50

Referenzen

[1] https://www.scribd.com/document/471812575/A-website
[2] https://2023.stateofjs.com/en-US/libraries/front-end-
frameworks/
[3] https://vercel.com/
[4] https://developer.chrome.com/docs/lighthouse/overview
[5] https://playwright.dev/
[6] https://gs.statcounter.com/

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 51

https://www.scribd.com/document/471812575/A-website
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://vercel.com/
https://developer.chrome.com/docs/lighthouse/overview
https://playwright.dev/
https://gs.statcounter.com/

Abkürzungsverzeichnis
Abkürzung Bedeutung

CI/CD
Continuous Integration and Continuous
Delivery

CSR Client-Side Rendering

DOM Document Object Model

FVC First Visual Change

HTML Hypertext Markup Language

JS JavaScript

LCP Largest Contentful Paint

LVC Last Visual Change

Abkürzung Bedeutung

OLVC Observed Last Visual Change

OFVC Observed First Visual Change

OVCD
Observed Visual Change

Duration

SSR Server-Side Rendering

TBT Total Blocking Time

TBW Total Byte Weight

TTFB Time To First Byte

TTI Time To Interactive

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 52

4.1 Page Load Time - TBT

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 53

Note
- Hosting irrelevant
- schlecht: Astro, Next.js

4.1 Page Load Time - LCP

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 54

Note
- lokal schlechter
- schlecht: Angular und Next.js

	Page 1
	Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

	Page 2
	Agenda

	Page 3
	1. Themenübersicht

	Page 4
	Page 5
	2. Fragestellung

	Page 6
	2. Fragestellung

	Page 7
	2. Fragestellung

	Page 8
	2. Fragestellung

	Page 9
	3. Lösungsstrategie und -design

	Page 10
	3.1 Frameworks

	Page 11
	3.2 Beispielanwendung

	Page 12
	3.3 Hosting-Umgebung
	Vercel [3]
	Localhost

	Page 13
	3.4 Metriken

	Page 14
	Page 15
	Page 16
	3.5 Test-Tools
	Lighthouse CLI
	Playwright

	Page 17
	Page 18
	3.6 Browser

	Page 19
	4. Ergebnisse

	Page 20
	4.1 Page Load Time - TTFB

	Page 21
	4.1 Page Load Time - TBW

	Page 22
	4.1 Page Load Time - TTI

	Page 23
	4.1 Page Load Time - DomContentLoaded

	Page 24
	4.2 Component Load Time - LoadEventEnd

	Page 25
	4.2 Component Load Time - balanced LoadEventEnd (1)

	Page 26
	4.2 Component Load Time - LoadEventEnd

	Page 27
	4.2 Component Load Time - balanced LoadEventEnd (2)

	Page 28
	4.1 Page Load Time - OLVC

	Page 29
	4.2 Component Load Time - OFVC

	Page 30
	4.2 Component Load Time - OVCD

	Page 31
	4.1 Page Load Time - OLVC

	Page 32
	4.2 Component Load Time - OVCD

	Page 33
	DOM Mutation Times

	Page 34
	Aufzeichnung

	Page 35
	Nutzung

	Page 36
	4.2 Component Load Times - DOM Mutations

	Page 37
	4.2 Component Load Times - DOM Mutations

	Page 38
	4.3 Component Update Times

	Page 39
	4.3 Component Update Times

	Page 40
	4.3 Component Update Times - Messungen

	Page 41
	4.3 Component Update Times - Messungen

	Page 42
	4.3 Component Update Times - Messungen

	Page 43
	4.3 Component Update Times - Messungen

	Page 44
	4.3 Component Update Times - Ranking
	Frameworks
	Browsers

	Page 45
	5. Lessons Learned

	Page 46
	5.1 Ergebnisse

	Page 47
	5.2 Methodik

	Page 48
	5.3 Test-Ansatz für DOM-Mutationen

	Page 49
	Dankeschön!

	Page 50
	Anhang

	Page 51
	Referenzen

	Page 52
	Abkürzungsverzeichnis

	Page 53
	4.1 Page Load Time - TBT

	Page 54
	4.1 Page Load Time - LCP

