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Note
- Dankeschön
  - präsentieren zu dürfen
  - Zeit, in Präsenz
- Titel
  - Performance-Unterschiede in Endprodukten
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Note
1. Thema einführen + Tiefe
2. Fragestellung für heute
3. Strategien zur Beantwortung + erklärende Worte zu Design
4. wichtige Ergebnisse: graphisch + Zahlen für Interpretation
5. 5 Minuten Lessons Learned für weitere Arbeiten

<PAUSE>
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1. Themenibersicht

“ Websites are made up of files written in HTML and CSS that are
rendered and displayed in web browsers. They can be static, with

pre-defined content, or dynamic, changing automatically based
on user input or other factors. [1]
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Multimedia
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https://www.scribd.com/document/471812575/A-website
Note
- gefundene Definition
- moderne Webseiten
  - other factors -> JS
  - statisch und dynamisch
    - Komplexität
    - Vorhersehbarkeit der Performance
- Diagram
  - dynamische: +Nutzer, +Netzwerk, +Services (Backend, DB, APIs)
  - viele Faktoren
  - Probleme -> langsamster Pfad
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Note
- Für Entwickler schwieriger
- Pfad rechts aufwendig
- Pfad links fast unmöglich
- Hoffnung: Foren für gewähltes Framework
- -> Frage nach bestem Framework
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2. Fragestellung

“ Hat die Wahl des Frameworks einen fur den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?
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Note
Oder anders formuliert: <VORLESEN>

- 3 Aspekte herausstellen
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2. Fragestellung

“ Hat die Wahl des Frameworks einen fur den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

e Framework
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Note
1. Framework
   1. Entwicklungs-Framework
   2. nicht einfach & gut konfigurierbar, sondern as is
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2. Fragestellung

“ Hat die Wahl des Frameworks einen fur den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

e Framework

e fUr den Nutzer merklich
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Note
2. für den Nutzer merklichen Einfluss
   1. unterschiedlich
   2. technisch vs wahrgenommen
   3. Zeiten unter 30ms ignorieren
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2. Fragestellung

“ Hat die Wahl des Frameworks einen fur den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

e Framework
e fUr den Nutzer merklich

e Render-Geschwindigkeit
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Note
3. Render-Geschwindigkeit
   1. viel Facetten -> Tendenzen
   2. Beispiel: schnelle erste Änderung, späte letzte Änderung

<PAUSE>
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3. Losungsstrategie und -design

1. Frameworks

2. Anwendung: Seiten, Komponenten und Content
3. Hosting-Umgebung

4. Metriken & Untersuchungsgegenstand

5. Test-Tools

6. Browser
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Note
- Versuch der Antwort -> 6 Dimensionen eingegrenzt
1. Frameworks
2. Anwendung: Bündelung, wiederverwendbare Ressourcen
3. Network Delay -> Hosting-Umgebung
4. Metriken beschreiben Untersuchungs-Gegenstand
5. Werkzeuge: Overhead -> -Performance
6. Browser
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3.1 Frameworks

CSR SSR Entscheidungskriterien: [2]

Angular | Astro e Nutzungsquote

React | Next.js e Empfehlungsrate

Vue.js Nuxt

Svelte

Andreas Nicklaus, 17.10.2024


https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
Note
FRAMEWORKS:
- CSR und SSR vorlesen
  - Big 3
  - Liebling Astro
- Wahl:
  - vergangene Nutzung
  - Bereitschaft zu Nutzung
  - Neigung unter Entwicklern mit Erfahrung im Framework
- Bewusst CSR UND SSR
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.2 Beispielanwendung

Notlnstagram + U0 Notlnstagram X Notlnstagram X -

Peter Poster nsert your image URL here... .
* @PeterPoster - Thig iy

Choose one of our images here.. ~ NOf[l’la’fﬂjf‘am

Your Profile  Peter Poster Tina Traveller  Lars Local Father, Athlete, Influencer in that order
Marketing Manager @HdM
ype your caption here
#father #athlete #influencer
o Peter Poster X
created just now

created by
o Peter Poster Andreas Nicklaus

@ @andreasnicklaus
@andreasnicklaus

V an067@hdm-stuttgart.de

S Nothing to see yet...

Choose an image to continue!

VIR o

196 likes

If you read this, you are great! Have a fantastic time

doing whatever it is that comes to your mind!

#ootd #foodie #Ineverthoughtthisdaywouldcome

3 days ago

Whheat is this?

B This project is part of the master thesis with the
#  TinaTraveller O likes title ..
Ll Nothing to see yet...

Insert a #caption to continue!
_ Just now
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Note
- Vergleich bedarf gleicher Umstände
  - sonst max. 2 Frameworks
- Nachbildung der App Instagram
- 4 Seiten
- Delayed vs statisch
- Create: Spezialfall -> Dynamisch
- Komponenten: Wrapper und Funktionen
  - Möglichkeit für un-konfigurierte Performanceoptimierung
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3.3 Hosting-Umgebung

Vercel [3] Localhost

e Network Delay e Reine Render-Geschwindigkeit

e Kostenloses Konto o oder Framework Preview

e CI/CD Integration e Baseline ohne Netzwerkverzogerung

Andreas Nicklaus, 17.10.2024 12


https://vercel.com/
Note
HOSTING:
1. Anbieter
   1. Realistische Netzwerkverzögerung + Serverauslastung
   2. SSR-Funktionen
   3. kostenlos -> kleine Projekte
   4. Github + Github Actions
   5. Verbreitet
   6. Mit Netzwerkanfragen untersucht
2. Localhost
   1. ohne Netzwerkverzögerung
   2. Preview oder serve
   3. Baseline für Browser-Prozesse
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3.4 Metriken

3 Kategorien zur besseren Unterteilung:

e Page Load Time (PLT)
e Component Load Time (CLT)
e Component Update Time (CUT)

|
|
request start t

Andreas Nicklaus, 17.10.2024
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Note
METRIKEN:
- 3 Kategorien
- PLT
  - klassische PLT
  - requeststart bis DomContentLoaded
- CLT
  - Prozesse im Browser ohne...
    - Netzwerk
    - Serveraktivitäten (SSR)
  - Baseline für Browserprozesse
- Component Update Time
  - Reaktion auf Eingaben
    - Nutzereingaben
    - Websocket Nachrichten
  - nach PLT und CLT
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PLT CLT CUT

Total Byte Weight X
Time To First Byte X
DomContentlLoaded X
_ast Visual Change X
Largest Contentful Paint | x
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Note
- Kategorien zuweisen (nur PLT)

1. TBW: Netzwerk-Bytes
2. TTFB: requestStart bis erstes Antwortbyte
3. DomContentLoaded: requestStart bis DOM geladen
4. LVC: letzte sichtbare Änderung im Viewport
5. LCP: Renderzeit des größten Element im Viewport -> empfundene Ladezeit
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PLT CLT CUT

Time To Interactive X X
Total Blocking Time X X
LoadEventEnd X X
Observed First Visual Change X
Observed Last Visual Change X
DOM Mutation Times X X
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Note
1. TTI: requestStart bis DOM "interactive"
2. TBT: von Nutzereingaben abgehalten (Code / Parsing)
3. LoadEventEnd: requestStart bis OnLoad des DOM

4. OFVC und OLVC: requestStart bis visuelle Änderung im Viewport
5. DOM Mutations
   1. nicht bekannt
   2. im HTML Root-Element pro Framework
   3. Laden und User Input
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3.5 Test-Tools
Lighthouse CLI

e State of the Art fur Web-
Performance

e Umfangreiche Sammlung an
Metriken

e Automatisierung von Tests

e Google Chrome

[4]

Andreas Nicklaus, 17.10.2024

Playwright

e Tests fur Content und
Interaktionen

e Custom Tests

e Injektion von Skripts
Black-Box-Testing

e Freie Browser-Wahl

[3]
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https://developer.chrome.com/docs/lighthouse/overview
https://playwright.dev/
Note
1. erste Station Lighthouse
   1. Sammlung an Metriken
   2. CLI: Automatisierung
   3. techn. mögl.: andere Browser
   4. Google Produkt -> Headless Google Chrome
2. Playwright
   1. prim. Content & Interaktionen
   2. Custom Skripte im Browserfenster
   3. Black Box mögl. -> Unabhängig von Entwicklung
   4. Browserwahl
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Lighthouse
‘otal Byte Weight (TBW)

Playwright

DomContentLoaded

"ime To First Byte (TTFB)

loadEventEnd

‘ime To Interactive (TTI)

Mutation Times

‘'otal Blocking Time (TBT)

Largest Contentful Paint (LCP)

Observed First Visual Change (OFVC)

Observed Last Visual Change (OLVC)

Andreas Nicklaus, 17.10.2024

17


Note
- Lighthouse:
  - Aggregat
- Playwright:
  - Window-Kontext
  - Custom
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3.6 Browser

e Google Chrome
e Mobile Chrome
e Chromium

e Microsoft Edge
e Firefox

e Desktop Safari

e Mobile Safari

[6]

Andreas Nicklaus, 17.10.2024
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https://gs.statcounter.com/
Note
BROWSERS:
- Lighthouse nur Google Chrome
- Playwright Wahl nach Verbreitung

<VORLESEN>
<PAUSE>
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4. Ergebnisse

e Unschlussig fur PLT und CLT
o Ungleich verteilte Starken und Schwachen der Frameworks

o Undeutliche Tendenzen bzgl. Client-Side vs. Server-Side
Rendering

e Undeutlich far CUT
o Zeiten und Zeitspannen der DOM Mutations

o Durchschnittsranking von Frameworks und Browsern moglich

Andreas Nicklaus, 17.10.2024
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Note
- Erkenntnisse vorwegnehmen -> richtige Augen

1. PLT und CLT unschlüssig für Frage
   1. Stärken und Schwächen
   2. undeutliche Bestlösung (CSR vs SSR)
2. CUT
   1. Tendenzen in Spannweite & Zeiten vom DOM Mutations
      1. Browser
      2. Frameworks


=]
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4.1 Page Load Time - TTFB

timeToFirstByte

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular ] Astro (mixed)

B Astro (duplicate) [ Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte ] Vue.js

1.200
1.000
800

2 600
400

200

VS EEEEEEEES

r /S S S
S

0

Andreas Nicklaus, 17.10.2024

S S S S S S S S S S
(S S S A

S
Vi EEEa

-1

VS EEEE

eed

N
\
\
\
\
\
\
\

Vi SEEEEEEd
r /S SSSS
Vi EEEEA
Vi EEEEd
S EEEEE

N
\
\
\
\
\
\
L!

=

y S S

bout

Page

S EEEEEEES

VS EEEEEE
VS EEA
S S S
NN EEE
VS EeA
r /7 /77 S S S
TSNS EEES

0

eate

N
iﬂ
RN
CNRRNN

RN
N
AR

ofile

o
—

20


Note
- lokal besser (nicht überraschend)
- Ausreißer:
  - Create & Profile: Astro
  - Feed: Angular, Next.js, Nuxt
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4.1 Page Load Time - TBW

totalbyteweight
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Note
- große Diff. unter Framework
- gut: Next.js, Astro, Svelte
- schlecht
  - Feed: Angular, Vue.js
  - generell, Nuxt


=]
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4.1 Page Load Time - TTI

interactive
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Note
- lokal schlechter (!!!)
- gut: Astro
- schlecht: Nuxt
- Abhängig v. Host & Seite: React und Svelte
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4.1 Page Load Time - DomContentLoaded

observedDomContentLoaded
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Note
- lokal gut
- gut: React und Vue.js
- schlecht: Astro
  - statisch besser
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4.2 Component Load Time - LoadEventEnd

loadEventEnd
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Note
- Ausreißer: Astro & Svelte in Firefox
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4.2 Component Load Time - balanced
LoadEventEnd (1)

In Firefox werden Requests teilweise erst verspatet gemacht. Das

balanced LoadEventEnd nur misst die Zeit nach dem Requeststart.

load EventEndyyiuneced = loadEventEnd, ., — requestStart

Andreas Nicklaus, 17.10.2024
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Note
- unerfindlicher Grund: requestStart spät in Firefox
- Lösung: balanced loadEventEnd

<Formel>
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4.2 Component Load Time - LoadEventEnd

loadEventEnd
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Note
Alte Messwerte
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4.2 Component Load Time - balanced
LoadEventEnd (2)

loadEventEnd (balanced)
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Note
Angeglichenen Werte

- einziger Unterscheid: Firefox
- Rest:
  - schlecht:
    - Angular
      - Chromium, Mobile Chrome, Microsoft Edge, Google Chrome
    - Astro
      - Desktop Safari, Mobile Safari
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4.1 Page Load Time - OLVC

observedLastVisualChange
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Note
1. starke Ausreißer von Nuxt auf der Feed  
2. Profile: Chained Async Funktionen.
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4.2 Component Load Time - OFVC

observedFirstVisualChange
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Note
- Outlier, aber lokal deutlich besser
  - in OLVC nicht sichtbar
- interessant: Unterschied
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4.2 Component Load Time - OVCD

First und Last Visual Change umfassen auch die Datenubertragungs-
zeit. Die Observed Visual Change Duration beschreibt die Zeit
zwischen Anfang und Ende der visuellen Anderungen.

observedVisualChangeDuration = OLVC — OFVC(C

Andreas Nicklaus, 17.10.2024 30


Note
- OFCV und OLVC beinhalten Netzwerkzeiten
- dazwischen Render-Geschwindigkeit im Browser

Gleichung
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4.1 Page Load Time - OLVC
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Note
OLVC
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4.2 Component Load Time - OVCD

observedVisualChangeDuration
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Note
OVCD

- hat nicht viel gebracht
  - OFVC relativ kurz
- Idee kann verbessert werden
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DOM Mutation Times

e Component Load Times e Component Update Times

Andreas Nicklaus, 17.10.2024
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Note
- Laden & Updaten der Seite
- CLT und CUT
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Aufzeichnung
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Note
1. Injection
2. Intervall
3. loadtimes
4. MutationObserver
5. DOM Mutation (id, xpath, Zeit -> Window-Kontext)
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Playwright Browser / Window
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Note
1. Seiten Laden
   1. 10 Sekunden warten
   2. Auswerten
2. User Interaction
   1. gleicher Prozess
   2. Reset
   3. Interaktion
   4. Warten
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4.2 Component Load Times - DOM Mutations

Component load mutation times
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Note
Ergebnis:
1. schlechter: Next.js, Svelte
2. Unterschiede in Browsern
3. Aufzeichnungen fehlen
   1. Frameworks fehlen
   2. Grenze bei 100 ms
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4.2 Component Load Times - DOM Mutations

o /wei Aufzeichnungsgrenzen
o Initialisierungsintervall von 100 ms
o festes Ende nach 10 s

e Fehlende Aufzeichnungen

o Schnelle Updates beim Laden des DOMs

o Langsame Updates nach Ende der Aufzeichnung

Andreas Nicklaus, 17.10.2024

37


Note
- 2 Aufzeichnungsgrenzen (Init & Ende)
  - 100 ms Intervall für Erkennung Root Element
  - 10 Sekunden bis Ende
- Fehlend:
  - direkt nach Ladebeginn
  - länger als 10 Sekunden


Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

4.3 Component Update Times

Notlnstagram

1. Caption Insert
E—— 2. Media Selection

3. Source Insert

4. Post Creation (1. & 2.)

O likes

Nothing to see yet...

Insert a #caption to continue!
Just now
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Note
- 4 User Actions: Formular -> Vorschau
- Caption
- Dropdown
- URL
- Caption + Dropdown
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4.3 Component Update Times

Framework Reaction Times
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Andreas Nicklaus, 17.10.2024 39


Note
1. gut: Nuxt (max. 200 unabhängig vom Browser)
2. langsam: Next.js (Firefox, Mobile Safari, Desktop Safari)
3. schnell:
   1. Chromium, Mobile Chrome, Google Chrome, ME
   2. Render-Engine Blink

<PAUSE>
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4.3 Component Update Times - Messungen

Nuxt Angular Vue.js React Astro Svelte Next.js (7))

Desktop Safari 86 123 136 169 170 164 304 | 164
124 172 200 280 270 283 493 | 260

47 52 52 67 78 56 73| 61

Mobile Safari 110 106 133 126 154 126 196 | 136
167 152 206 183 254 208 372|220

59 54 52 54 63 60 59| 57

Firefox 83 89 82 84 99 94 142 | 96
108 123 103 181 142 129 235 | 146
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Note
- Min., Max., Durchschnitt
- rot: schlechteste Werte
- langsamste Browser
- gut: Nuxt (Ausnahmen)
- schlecht: Next.js (Ausnahmen)
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4.3 Component Update Times - Messungen

Angular Vue.js

React Astro

Svelte Next.js

Mobile Chrome 61 67 69 67 69 81 94 |73
82 90 89 82 85 116 143 | 98
39 44 51 44 51 38 47 | 45
Chromium 66 69 77 58 71 74 7570
924 95 104 85 89 95 108 | 96
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Note
- ähnlich
- mittlere Plätze umkämpft / Framework ungefähr gleich
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4.3 Component Update Times - Messungen

Nuxt Angular Vue.js

React Astro Svelte

Microsoft Edge 61 70 61 62 64 74 73 | 67
85 90 79 75 80 102 134 | 93
34 41 37 40 43 39 41 | 39
Google Chrome 60 62 61 59 57 64 69 | 62
77 84 77 77 72 89 99 | 82
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Note
- schnellste Browser: ME, Google Chrome
- grün: schnellste Werte
  - Astro war schon schlechtester Minimalwert
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4.3 Component Update Times - Messungen

Angular Vue.js

React Astro Svelte Next.js

Browser Average 75 84 88 89 98 97 136
105 115 123 138 142 146 226

35 45 36 45 48 42 45

Weighted Browser Average 60 69 70 75 74 78 107
80 94 93 110 104 118 167
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Note
- Durchschnitt -> Ranking
- Rein:
  - 1: Nuxt
  - 2: Angular
  - 3: Vue.js, React
  - 5: Astro, Svelte
  - 7: Nex.js
- Weighted nach Nutzungsquote
  - 1: Nuxt
  - 2: Angular, Vue.js
  - 4: React, Astro
  - 6: Svelte
  - 7: Next.js
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4.3 Component Update Times - Ranking

Frameworks Browsers

1. Nuxt 1. Google Chrome
2. Angular 2. Microsoft Edge
3. Vue.js 3. Chromium

4. React 4. Mobile Chrome
5. Astro / Svelte 5. Firefox

6. Next.js 6. Mobile Safari

/. Desktop Safari
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Note
Rankings:

<VORLESEN>
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5. Lessons Learned

1. Ergebnisse

2. Methodik
3. Test-Ansatz fur DOM-Mutationen

Andreas Nicklaus, 17.10.2024
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Note
- Zusammenfassung
- kritische Worte zu
  - Ergebnissen
  - Herangehensweise
  - Test-Ansätze zu DOM Mutations
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5.1 Ergebnisse

o Testergebnisse sind nicht eindeutig bzgl. Page Load Times und
Component Load Times.

e Component Update Times zeigen undeutliche Tendenzen auf.

CUT:

e Frameworks: @ 69 - 107 ms
e Browsers: @ 62 - 164 ms

Andreas Nicklaus, 17.10.2024
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Note
- Ergebnisse nicht ausreichen zu Antwort in PLT und CLT
- CUT: Tendenzen zu Performance-Unterschied
- Frameworks: Ø 69 - 107 ms 
- Browsers: Ø 62 - 164 ms
- größerer Unterschied erhofft und erwartet
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5.2 Methodik

e Messergebnisse schwanken um bis zu 30%

e Verteilung der Ergebnisse konnte Performanceunterschiede
aufzeigen

e Testumfang muss ausgeweitet werden
o Seiten
o Komponenten
o Hosting Services

o Test Runs

Andreas Nicklaus, 17.10.2024
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Note
- Lücken in meiner Forschung
- Lighthouse schwankt um 30%
  - Verteilung interessanter
- Mehr Datenpunkte
  - Seiten & -arten
  - Komponenten & -funktionen
  - Hosting Möglichkeiten
  - Test Runs & zu Tageszeiten für Network Delay
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5.3 Test-Ansatz fiir DOM-Mutationen

e Aufzeichnungen von DOM-Mutationen fehlen am Anfang und Ende
der Tests

e White-Box Testing, um...
o Aufzeichnungen zu triggern und...

o Rendering-Ende zu signalisieren

e keine Tests zu Navigation zwischen Seiten

Andreas Nicklaus, 17.10.2024
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Note
- Verbesserungsmöglichkeiten

1. fehlende Aufzeichnungen
   1. Black-Box vergessen -> White-Box
   2. Events am Anfang und Ende von Änderungen
      1. Initialisierung signalisieren
      2. Ende von State-Change signalisieren
2. Navigation zwischen Seiten

<PAUSE>


Dankeschon!

Mega-fast or just super-fast? Performance differences of
mainstream JavaScript frameworks for web applications
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Note
- Vorbereitete Antworten
- gerne unvorbereitete Antworten geben
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Anhang
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Referenzen

[1] https://www.scribd.com/document/471812575/A-website

[2] https://2023.stateofjs.com/en-US/libraries/front-end-
frameworks/

3] https://vercel.com/
https://developer.chrome.com/docs/lighthouse/overview
nttps://playwright.dev/

nttps://gs.statcounter.com/
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Abkurzungsverzeichnis

Abkilirzung Bedeutung

Abkiirzung Bedeutung

Cl/CD Continuous Integration and Continuous OLVC Observed Last Visual Change
Delivery OFVC Observed First Visual Change

CSR Client-Side Rendering oveD Observed Visual Change

DOM Document Object Model Duration

FVC First Visual Change SSR Server-Side Rendering

HTML Hypertext Markup Language TBT Total Blocking Time

JS JavaScript TBW Total Byte Weight

LCP Largest Contentful Paint TTFB Time To First Byte

LVC Last Visual Change TTI Time To Interactive
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4.1 Page Load Time - TBT

totalBlockingTime

BN Angular on Vercel RN Astro on Vercel B Next.js on Vercel S8 React on Vercel Jg8 Nuxt (build) on Vercel
N Nuxt (generate) on Vercel IR Svelte on Vercel J Vue.js on Vercel i} Angular ] Astro (mixed)

B Astro (duplicate) [ Next.js [l Nuxt (build) [l Nuxt (generate) I React i} Svelte ] Vue.js
350

300
250
200
150
100

50

]

NN I
SEE ! III = _ ] A\

Feed About Create Profile
Page

ms
V A
'””””””””ﬂ

e
e

o

Andreas Nicklaus, 17.10.2024


Note
- Hosting irrelevant
- schlecht: Astro, Next.js
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4.1 Page Load Time - LCP

largestContentfulPaint
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Note
- lokal schlechter
- schlecht: Angular und Next.js
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