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Note
- Dankeschön
  - präsentieren zu dürfen
  - Zeit, in Präsenz
- Titel
  - Performance-Unterschiede in Endprodukten
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1. Themenübersicht

2. Fragestellung

3. Lösungsstrategie und -design

4. Ergebnisse

5. Lessons Learned
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Note
1. Thema einführen + Tiefe
2. Fragestellung für heute
3. Strategien zur Beantwortung + erklärende Worte zu Design
4. wichtige Ergebnisse: graphisch + Zahlen für Interpretation
5. 5 Minuten Lessons Learned für weitere Arbeiten

<PAUSE>



1. Themenübersicht

HTML

JS CSS

Multimedia

Renderer
(Browser) Display

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Websites are made up of files written in HTML and CSS that are
rendered and displayed in web browsers. They can be static, with
pre-defined content, or dynamic, changing automatically based
on user input or other factors. [1]

“

“
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https://www.scribd.com/document/471812575/A-website
Note
- gefundene Definition
- moderne Webseiten
  - other factors -> JS
  - statisch und dynamisch
    - Komplexität
    - Vorhersehbarkeit der Performance
- Diagram
  - dynamische: +Nutzer, +Netzwerk, +Services (Backend, DB, APIs)
  - viele Faktoren
  - Probleme -> langsamster Pfad
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Note
- Für Entwickler schwieriger
- Pfad rechts aufwendig
- Pfad links fast unmöglich
- Hoffnung: Foren für gewähltes Framework
- -> Frage nach bestem Framework



2. Fragestellung

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Hat die Wahl des Frameworks einen für den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

“

“
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Note
Oder anders formuliert: <VORLESEN>

- 3 Aspekte herausstellen



2. Fragestellung

Framework

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Hat die Wahl des Frameworks einen für den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

“

“
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Note
1. Framework
   1. Entwicklungs-Framework
   2. nicht einfach & gut konfigurierbar, sondern as is



2. Fragestellung

Framework

für den Nutzer merklich

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Hat die Wahl des Frameworks einen für den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

“

“
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Note
2. für den Nutzer merklichen Einfluss
   1. unterschiedlich
   2. technisch vs wahrgenommen
   3. Zeiten unter 30ms ignorieren



2. Fragestellung

Framework

für den Nutzer merklich

Render-Geschwindigkeit

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Hat die Wahl des Frameworks einen für den Nutzer merklichen
Einfluss auf die Render-Geschwindigkeit der Webseite?

“

“
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Note
3. Render-Geschwindigkeit
   1. viel Facetten -> Tendenzen
   2. Beispiel: schnelle erste Änderung, späte letzte Änderung

<PAUSE>



3. Lösungsstrategie und -design

1. Frameworks

2. Anwendung: Seiten, Komponenten und Content

3. Hosting-Umgebung

4. Metriken & Untersuchungsgegenstand

5. Test-Tools

6. Browser

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- Versuch der Antwort -> 6 Dimensionen eingegrenzt
1. Frameworks
2. Anwendung: Bündelung, wiederverwendbare Ressourcen
3. Network Delay -> Hosting-Umgebung
4. Metriken beschreiben Untersuchungs-Gegenstand
5. Werkzeuge: Overhead -> -Performance
6. Browser



3.1 Frameworks

CSR SSR

Angular Astro

React Next.js

Vue.js Nuxt

Svelte

Entscheidungskriterien: [2]

Nutzungsquote

Empfehlungsrate
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https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
Note
FRAMEWORKS:
- CSR und SSR vorlesen
  - Big 3
  - Liebling Astro
- Wahl:
  - vergangene Nutzung
  - Bereitschaft zu Nutzung
  - Neigung unter Entwicklern mit Erfahrung im Framework
- Bewusst CSR UND SSR



3.2 Beispielanwendung

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 11

Note
- Vergleich bedarf gleicher Umstände
  - sonst max. 2 Frameworks
- Nachbildung der App Instagram
- 4 Seiten
- Delayed vs statisch
- Create: Spezialfall -> Dynamisch
- Komponenten: Wrapper und Funktionen
  - Möglichkeit für un-konfigurierte Performanceoptimierung



3.3 Hosting-Umgebung

Vercel [3]

Network Delay

Kostenloses Konto

CI/CD Integration

Localhost

Reine Render-Geschwindigkeit

serve  oder Framework Preview

Baseline ohne Netzwerkverzögerung
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https://vercel.com/
Note
HOSTING:
1. Anbieter
   1. Realistische Netzwerkverzögerung + Serverauslastung
   2. SSR-Funktionen
   3. kostenlos -> kleine Projekte
   4. Github + Github Actions
   5. Verbreitet
   6. Mit Netzwerkanfragen untersucht
2. Localhost
   1. ohne Netzwerkverzögerung
   2. Preview oder serve
   3. Baseline für Browser-Prozesse



3.4 Metriken

3 Kategorien zur besseren Unterteilung:

Page Load Time (PLT)

Component Load Time (CLT)

Component Update Time (CUT)

PLT

CLT CUT

trequest start
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Andreas Nicklaus, 17.10.2024 13

Note
METRIKEN:
- 3 Kategorien
- PLT
  - klassische PLT
  - requeststart bis DomContentLoaded
- CLT
  - Prozesse im Browser ohne...
    - Netzwerk
    - Serveraktivitäten (SSR)
  - Baseline für Browserprozesse
- Component Update Time
  - Reaktion auf Eingaben
    - Nutzereingaben
    - Websocket Nachrichten
  - nach PLT und CLT



PLT CLT CUT

Total Byte Weight x

Time To First Byte x

DomContentLoaded x

Last Visual Change x

Largest Contentful Paint x

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 14

Note
- Kategorien zuweisen (nur PLT)

1. TBW: Netzwerk-Bytes
2. TTFB: requestStart bis erstes Antwortbyte
3. DomContentLoaded: requestStart bis DOM geladen
4. LVC: letzte sichtbare Änderung im Viewport
5. LCP: Renderzeit des größten Element im Viewport -> empfundene Ladezeit



PLT CLT CUT

Time To Interactive x x

Total Blocking Time x x

LoadEventEnd x x

Observed First Visual Change x

Observed Last Visual Change x

DOM Mutation Times x x
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Note
1. TTI: requestStart bis DOM "interactive"
2. TBT: von Nutzereingaben abgehalten (Code / Parsing)
3. LoadEventEnd: requestStart bis OnLoad des DOM

4. OFVC und OLVC: requestStart bis visuelle Änderung im Viewport
5. DOM Mutations
   1. nicht bekannt
   2. im HTML Root-Element pro Framework
   3. Laden und User Input



3.5 Test-Tools

Lighthouse CLI

State of the Art für Web-
Performance

Umfangreiche Sammlung an
Metriken

Automatisierung von Tests

Google Chrome

[4]

Playwright

Tests für Content und
Interaktionen

Custom Tests

Injektion von Skripts
 Black-Box-Testing

Freie Browser-Wahl

[5]
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https://developer.chrome.com/docs/lighthouse/overview
https://playwright.dev/
Note
1. erste Station Lighthouse
   1. Sammlung an Metriken
   2. CLI: Automatisierung
   3. techn. mögl.: andere Browser
   4. Google Produkt -> Headless Google Chrome
2. Playwright
   1. prim. Content & Interaktionen
   2. Custom Skripte im Browserfenster
   3. Black Box mögl. -> Unabhängig von Entwicklung
   4. Browserwahl



Lighthouse Playwright

Total Byte Weight (TBW) DomContentLoaded

Time To First Byte (TTFB) loadEventEnd

Time To Interactive (TTI) Mutation Times

Total Blocking Time (TBT)

Largest Contentful Paint (LCP)

Observed First Visual Change (OFVC)

Observed Last Visual Change (OLVC)

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- Lighthouse:
  - Aggregat
- Playwright:
  - Window-Kontext
  - Custom



3.6 Browser

Google Chrome

Mobile Chrome

Chromium

Microsoft Edge

Firefox

Desktop Safari

Mobile Safari

[6]
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https://gs.statcounter.com/
Note
BROWSERS:
- Lighthouse nur Google Chrome
- Playwright Wahl nach Verbreitung

<VORLESEN>
<PAUSE>



4. Ergebnisse

Unschlüssig für PLT und CLT

Ungleich verteilte Stärken und Schwächen der Frameworks

Undeutliche Tendenzen bzgl. Client-Side vs. Server-Side
Rendering

Undeutlich für CUT

Zeiten und Zeitspannen der DOM Mutations

Durchschnittsranking von Frameworks und Browsern möglich

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- Erkenntnisse vorwegnehmen -> richtige Augen

1. PLT und CLT unschlüssig für Frage
   1. Stärken und Schwächen
   2. undeutliche Bestlösung (CSR vs SSR)
2. CUT
   1. Tendenzen in Spannweite & Zeiten vom DOM Mutations
      1. Browser
      2. Frameworks



4.1 Page Load Time - TTFB
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Note
- lokal besser (nicht überraschend)
- Ausreißer:
  - Create & Profile: Astro
  - Feed: Angular, Next.js, Nuxt



4.1 Page Load Time - TBW
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Note
- große Diff. unter Framework
- gut: Next.js, Astro, Svelte
- schlecht
  - Feed: Angular, Vue.js
  - generell, Nuxt



4.1 Page Load Time - TTI
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Note
- lokal schlechter (!!!)
- gut: Astro
- schlecht: Nuxt
- Abhängig v. Host & Seite: React und Svelte



4.1 Page Load Time - DomContentLoaded

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 23

Note
- lokal gut
- gut: React und Vue.js
- schlecht: Astro
  - statisch besser



4.2 Component Load Time - LoadEventEnd
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Note
- Ausreißer: Astro & Svelte in Firefox



4.2 Component Load Time - balanced
LoadEventEnd (1)

In Firefox werden Requests teilweise erst verspätet gemacht. Das
balanced LoadEventEnd nur misst die Zeit nach dem Requeststart.

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- unerfindlicher Grund: requestStart spät in Firefox
- Lösung: balanced loadEventEnd

<Formel>



4.2 Component Load Time - LoadEventEnd
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Note
Alte Messwerte



4.2 Component Load Time - balanced
LoadEventEnd (2)
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Note
Angeglichenen Werte

- einziger Unterscheid: Firefox
- Rest:
  - schlecht:
    - Angular
      - Chromium, Mobile Chrome, Microsoft Edge, Google Chrome
    - Astro
      - Desktop Safari, Mobile Safari



4.1 Page Load Time - OLVC
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Note
1. starke Ausreißer von Nuxt auf der Feed  
2. Profile: Chained Async Funktionen.



4.2 Component Load Time - OFVC
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Note
- Outlier, aber lokal deutlich besser
  - in OLVC nicht sichtbar
- interessant: Unterschied



4.2 Component Load Time - OVCD

First und Last Visual Change umfassen auch die Datenübertragungs-
zeit. Die Observed Visual Change Duration beschreibt die Zeit
zwischen Anfang und Ende der visuellen Änderungen.

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 30

Note
- OFCV und OLVC beinhalten Netzwerkzeiten
- dazwischen Render-Geschwindigkeit im Browser

Gleichung



4.1 Page Load Time - OLVC

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 17.10.2024 31

Note
OLVC



4.2 Component Load Time - OVCD
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Note
OVCD

- hat nicht viel gebracht
  - OFVC relativ kurz
- Idee kann verbessert werden



DOM Mutation Times

Component Load Times Component Update Times
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Note
- Laden & Updaten der Seite
- CLT und CUT



Aufzeichnung

[Root-Element
gefunden]

Initialisieren
MutationObserver

loadTimes
[leer]

Veröffentlichen
loadTimes Ändern DOM

Speichern der Mutations

loadTimes
[gefüllt]

MutationObserver
[initialisiert]

Recording-Script Window DOM

Registrieren Startzeit

Initialisieren LoadTimes

loadTimes
[leer]

[Root-Element
existiert nicht]

Warten 100 ms

Injecten Skript

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
1. Injection
2. Intervall
3. loadtimes
4. MutationObserver
5. DOM Mutation (id, xpath, Zeit -> Window-Kontext)



Nutzung

Injecten Skript

Playwright Browser / Window

loadTimes
[gefüllt]

Warten 10 s

Aufrufen Seiten

Laden Seite

Mutieren DOM

Auswerten loadTimes

Injecten Skript

Playwright Browser / Window

loadTimes
[gefüllt]

Warten 3 s

Aufrufen Seiten

Laden Seite

Mutieren DOM

Zurücksetzen loadTimes

loadTimes
[gefüllt]

Mutieren DOM

Ausführen Interaktion

loadTimes
[leer]

Auswerten loadTimes

Warten 5 s

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
1. Seiten Laden
   1. 10 Sekunden warten
   2. Auswerten
2. User Interaction
   1. gleicher Prozess
   2. Reset
   3. Interaktion
   4. Warten



4.2 Component Load Times - DOM Mutations
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Note
Ergebnis:
1. schlechter: Next.js, Svelte
2. Unterschiede in Browsern
3. Aufzeichnungen fehlen
   1. Frameworks fehlen
   2. Grenze bei 100 ms



4.2 Component Load Times - DOM Mutations

Zwei Aufzeichnungsgrenzen

Initialisierungsintervall von 100 ms

festes Ende nach 10 s

Fehlende Aufzeichnungen

Schnelle Updates beim Laden des DOMs

Langsame Updates nach Ende der Aufzeichnung

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- 2 Aufzeichnungsgrenzen (Init & Ende)
  - 100 ms Intervall für Erkennung Root Element
  - 10 Sekunden bis Ende
- Fehlend:
  - direkt nach Ladebeginn
  - länger als 10 Sekunden



4.3 Component Update Times

1. Caption Insert

2. Media Selection

3. Source Insert

4. Post Creation (1. & 2.)

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- 4 User Actions: Formular -> Vorschau
- Caption
- Dropdown
- URL
- Caption + Dropdown



4.3 Component Update Times

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
1. gut: Nuxt (max. 200 unabhängig vom Browser)
2. langsam: Next.js (Firefox, Mobile Safari, Desktop Safari)
3. schnell:
   1. Chromium, Mobile Chrome, Google Chrome, ME
   2. Render-Engine Blink

<PAUSE>



4.3 Component Update Times - Messungen

ms Nuxt Angular Vue.js React Astro Svelte Next.js Ø

51 77 47 84 87 70 79 71

Desktop Safari 86 123 136 169 170 164 304 164

124 172 200 280 270 283 493 260

47 52 52 67 78 56 73 61

Mobile Safari 110 106 133 126 154 126 196 136

167 152 206 183 254 208 372 220

59 54 52 54 63 60 59 57

Firefox 83 89 82 84 99 94 142 96

108 123 103 181 142 129 235 146

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- Min., Max., Durchschnitt
- rot: schlechteste Werte
- langsamste Browser
- gut: Nuxt (Ausnahmen)
- schlecht: Next.js (Ausnahmen)



4.3 Component Update Times - Messungen

ms Nuxt Angular Vue.js React Astro Svelte Next.js Ø

42 44 46 44 49 45 47 45

Mobile Chrome 61 67 69 67 69 81 94 73

82 90 89 82 85 116 143 98

39 44 51 44 51 38 47 45

Chromium 66 69 77 58 71 74 75 70

94 95 104 85 89 95 108 96

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- ähnlich
- mittlere Plätze umkämpft / Framework ungefähr gleich



4.3 Component Update Times - Messungen

ms Nuxt Angular Vue.js React Astro Svelte Next.js Ø

37 43 40 41 44 40 46 42

Microsoft Edge 61 70 61 62 64 74 73 67

85 90 79 75 80 102 134 93

34 41 37 40 43 39 41 39

Google Chrome 60 62 61 59 57 64 69 62

77 84 77 77 72 89 99 82

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- schnellste Browser: ME, Google Chrome
- grün: schnellste Werte
  - Astro war schon schlechtester Minimalwert



4.3 Component Update Times - Messungen

ms Nuxt Angular Vue.js React Astro Svelte Next.js

44 51 46 53 59 50 56

Browser Average 75 84 88 89 98 97 136

105 115 123 138 142 146 226

35 45 36 45 48 42 45

Weighted Browser Average 60 69 70 75 74 78 107

80 94 93 110 104 118 167

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- Durchschnitt -> Ranking
- Rein:
  - 1: Nuxt
  - 2: Angular
  - 3: Vue.js, React
  - 5: Astro, Svelte
  - 7: Nex.js
- Weighted nach Nutzungsquote
  - 1: Nuxt
  - 2: Angular, Vue.js
  - 4: React, Astro
  - 6: Svelte
  - 7: Next.js



4.3 Component Update Times - Ranking

Frameworks

1. Nuxt

2. Angular

3. Vue.js

4. React

5. Astro / Svelte

6. Next.js

Browsers

1. Google Chrome

2. Microsoft Edge

3. Chromium

4. Mobile Chrome

5. Firefox

6. Mobile Safari

7. Desktop Safari

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
Rankings:

<VORLESEN>



5. Lessons Learned

1. Ergebnisse

2. Methodik

3. Test-Ansatz für DOM-Mutationen

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- Zusammenfassung
- kritische Worte zu
  - Ergebnissen
  - Herangehensweise
  - Test-Ansätze zu DOM Mutations



5.1 Ergebnisse

Testergebnisse sind nicht eindeutig bzgl. Page Load Times und
Component Load Times.

Component Update Times zeigen undeutliche Tendenzen auf.

CUT:

Frameworks: Ø 69 - 107 ms

Browsers: Ø 62 - 164 ms

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- Ergebnisse nicht ausreichen zu Antwort in PLT und CLT
- CUT: Tendenzen zu Performance-Unterschied
- Frameworks: Ø 69 - 107 ms 
- Browsers: Ø 62 - 164 ms
- größerer Unterschied erhofft und erwartet



5.2 Methodik

Messergebnisse schwanken um bis zu 30%

Verteilung der Ergebnisse könnte Performanceunterschiede
aufzeigen

Testumfang muss ausgeweitet werden

Seiten

Komponenten

Hosting Services

Test Runs

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- Lücken in meiner Forschung
- Lighthouse schwankt um 30%
  - Verteilung interessanter
- Mehr Datenpunkte
  - Seiten & -arten
  - Komponenten & -funktionen
  - Hosting Möglichkeiten
  - Test Runs & zu Tageszeiten für Network Delay



5.3 Test-Ansatz für DOM-Mutationen

Aufzeichnungen von DOM-Mutationen fehlen am Anfang und Ende
der Tests

White-Box Testing, um...

Aufzeichnungen zu triggern und...

Rendering-Ende zu signalisieren

keine Tests zu Navigation zwischen Seiten

Mega-fast or just super-fast? Performance differences of mainstream JavaScript frameworks for web applications
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Note
- Verbesserungsmöglichkeiten

1. fehlende Aufzeichnungen
   1. Black-Box vergessen -> White-Box
   2. Events am Anfang und Ende von Änderungen
      1. Initialisierung signalisieren
      2. Ende von State-Change signalisieren
2. Navigation zwischen Seiten

<PAUSE>



Dankeschön!

Mega-fast or just super-fast? Performance differences of
mainstream JavaScript frameworks for web applications

Andreas Nicklaus, 44835

17.10.2024

Note
- Vorbereitete Antworten
- gerne unvorbereitete Antworten geben



Anhang
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Abkürzungsverzeichnis
Abkürzung Bedeutung

CI/CD
Continuous Integration and Continuous
Delivery

CSR Client-Side Rendering

DOM Document Object Model

FVC First Visual Change

HTML Hypertext Markup Language

JS JavaScript

LCP Largest Contentful Paint

LVC Last Visual Change

Abkürzung Bedeutung

OLVC Observed Last Visual Change

OFVC Observed First Visual Change

OVCD
Observed Visual Change

Duration

SSR Server-Side Rendering

TBT Total Blocking Time

TBW Total Byte Weight

TTFB Time To First Byte

TTI Time To Interactive
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4.1 Page Load Time - TBT
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Note
- Hosting irrelevant
- schlecht: Astro, Next.js



4.1 Page Load Time - LCP
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Note
- lokal schlechter
- schlecht: Angular und Next.js
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