HOCHSCHULE
DER MEDIEN

Mega-fast or just super-fast? Performance differences of
mainstream JavaScript frameworks for web applications

Andreas Nicklaus
Hochschule der Medien Stuttgart
an(067@hdm-stuttgart.de

Prof. Dr. Fridtjof Toenniessen & Stephan Soller

Abstract

An essential initial step in every modern web application project is the selec-
tion of an appropriate web development framework. Often, detrimental decisions
are made based on sentiment rather than a proper assessment of the framework’s
performance vs. the project requirements and resources.

This thesis presents a study of a model web application created identically
with seven mainstream JavaScript web development frameworks: Angular, Astro,
Next.js, Nuxt, React, Svelte and Vue.js.

Performance measurements are done with Lighthouse and Playwright tools to
identify strengths and weaknesses of the frameworks. To this end, classic page load
times and the load and update times of JavaScript components are retrieved among
other data. Additionally, two new suitable derivative metrics are evaluated: the
“Observed Visual Change Duration” and a "loadEventEnd" metric.

The results show no clear-cut general advantage of a single web development
framework. Component update times indicate Nuxt as the fastest web development
framework. Next.js is the slowest one in this context. Similarly, Google Chrome
appears to be the fastest client browser. Desktop Safari is the slowest one for
updating the DOM after user input.

1 Introduction

With the evolution of the world wide web, development of websites reached a higher
complexity, both of the page content and the functionality. This complexity resulted in
higher demand for technical sophistication in networking, hosting services and develop-
ment tools. Although modern frameworks provide technical advancements to increase the
speed of page and content generation and arguably a better developer experience, there
is no apparent way to objectively determine a “best framework” in terms of development
ease and speed.

When it comes to user experience and perceived performance however, there are plen-
tiful collections of metrics and criteria to choose from so as to determine the performance

of websites, not frameworks. The strife always is to somehow better the web site per-
formance since it has a palpable influence on search engine results, user acceptance and
ultimately project success. Hence, there are business interests and financial incentives to
invest resources into performance optimization (Li et al.l 2010; |Zhou et al., |2013]). Past
research, existing tools and guides give direction to optimize websites according to stake-
holders’ and users’ expectations. Yet in most cases, the only focus on specific websites or
specific frameworks or give general advice.

The lack of research on the effect of the framework on website performance indi-
cates a need for research on the topic. Relying on marketing material for the choice of
framework is questionable because most modern frameworks claim to be fast, easy to
use and performance efficient. This suggests that each would be a great choice. Thus,
comparing frameworks presents a challenge because no ideal set of metrics for this use
case is apparent and there are no publicly accessible replicas of web applications built
with different frameworks available. Therefore, a comparative study between versions of
the same website built with different web development frameworks is needed. With this
data, an informed choice might be made for projects in the future.

The goals of this thesis are to propose a set of metrics that allow comparing main-
stream [JavaScript (JS)| frameworks for web applications, to provide a comparative study
between selected frameworks and to create a tool to compare the rendering performance
a web page as a whole and of dynamic components within a page.

2 Application and testing environment

Frameworks. One of the choices for the setup of the study is which frameworks to
implement the application in and compare. The selected frameworks have to support the
designed web application without the help of another tool or framework unless intended
by the developers of the framework. Plus, the frameworks have to use [JavaScript (JS)|in
order to narrow down the scope of the study. TypeScript frameworks are allowed because
they support [JS| (Bierman et al., [2014)).

Basis for the framework selection are the rankings of most-used, most-liked and most-
interesting web development frameworks and tools (Devographics, 2024). The following
frameworks were selected for this framework:

e Angular e Next.js e React e Vue.js

e Astro o Nuxt e Svelte

Others like Preact, Solid and Qwik were considered to be included in this study, but
were dropped because of negative sentiment or low usage among developers that have
experience with the tools.

Web application. The web application used for this study is designed to be the
subject of comparisons between frameworks. Its look is derived from the Android app
of Instagram (Instagram from Meta), 2024) and it has four pages (see figure [I)). The
four pages cover three generally valid page types identified in the design process. The
About page is a “Static page” as it does not change its content after the initial response
from the web server. No additional data query is needed to build the finished
structure. The Feed page and the Profile page are “Delayed pages”. Their defining

characteristic is that the cannot be fully built from the initial document,
but needs data queries to complete before all content can be displayed. These data
queries are triggered immediately after the initial page request. The Create page is the
only “Dynamic page”. Tts initial features indicate it being either a static or delayed page,
depending on the implementation, and it has dynamic components that update through
user input. Mutations to the are therefore not only triggered by the initial page
request but a user interaction. The time of such changes is therefore not predictable.

Notlnstagram v Notlnstagram X Notlnstagram X

N Peter Posty
Notlnstagram LA

Your Profile Peter Poster ~ Tina Traveller Lars Loca Father, Athlete, Influencer in that order

Marketing Manager @HdM
° Peter Poster #father #athlete #influencer
)

created by
Andreas Nicklaus

@ @andreasnicklaus

@andreasnicklaus
q an067@hdm-stuttgart.de
ch N hr‘vnwgmmg Iy
What s this?
m\es project is part of the master thesis with the A Tina Traveller z")i"‘:i:g e
Insert a #caption to it
(a) About page (b) Feed page (c) Profile page (d) Create page

Figure 1: Screenshots of the “NotInstagram” application’s pages

Components. These four pages are comprised of 15 components, most of which
are wrappers to encapsulate image components, styled text or iterations over lists with
subcomponents. However, two components stand out because of their special purpose
and implementation differences between frameworks.

1. The MediaComponent is designed to present both internal and external image and
video sources in a single component. It is used to display Profile images and Post
content. Its main purpose is to decide - based on the passed source string - how to
project the multimedia file onto the DOM] As such, a decision for enhanced image
or video elements had to be made per framework during the implementation of
the application. Svelte, Astro, Next.js and Nuxt provide such an enhanced image
component. In contrast, video elements are inserted to the as-is, but the
browser behaviour is adapted identically for all frameworks using attributes on the
<video> element and [JavaScript] In addition, the import of local images differs
between frameworks because the load behaviour differs. As such, some frameworks
require importing all local images in order to select the requested image.

2. Astro does not natively support dynamic components as needed in the Create page
of the application. The intended solution is to implement so-called “Islands” using
another framework. React is chosen for its high usage rate among web developers
(Devographics, 2024). As a result, two implementations are compared in this study:

Using the React components that are needed for Astro Islands everywhere, even
if the component in question is not dynamic, and creating duplicate native Astro
components for when a component is not required to be dynamic. One additional
React component “CreateForm” was created in order to encapsulate React subcom-
ponents and six components were implemented in React because they are part of
the form and the Post preview on the Create page.

Hosting. In order to test the end-products of the frameworks, at least one web server
is needed to host the application. Network delays are an obvious source of rendering and
performance issues (Grigorik, |2013)). For this reason, the tests for this study are performed
on two different web servers: An online hosting service and the local testing machine.

1. Vercel was chosen for hosting the applications on distant servers based on its
popularity, capabilities for [Server-side Rendering (SSR)| support for both a free
and paid version and its simple integration into pipelines. Each Vercel
project was connected to a Github repository, one per framework. Only required
project configuration options were changed per project on the plattform to ensure
its state as “as-is”.

2. A local host was chosen to minimize the effect of network delay and related delays,
e.g. domain name resolving, in this study. The application is hosted on the testing
machine. A HP Envy x360 with an AMD Ryzen 5 5500U processor and 16 GB RAM
is used here. The OS on the device is Windows 11 Home (Version 10.0.22631) during
testing. The application is built before every test and hosted using either built-in
commands for the framework or using the serve command.

Metrics. To identify strengths and weaknesses of the frameworks, eleven metrics
were chosen to test the frameworks in three categories (see table[l)). The Page Load Time
(PLT) covers the classic load time of web pages and is specified to outline the load speed
from requestStart to the last change to the page. The Component Load Time (CLT)
is defined as the time frame in which any changes to the with [JS| can be identified
and the rendering process of [J5| components are shown. The Component Update Time
(CUT) is defined as the time between a user interaction and a[DOM|mutation. This time
frame describes the speed of feedback to the user that the interaction has been registered
and something is happening as well as the speed until that something finishes happening.
Especially mutation times are expected to show differences between frameworks
and implementations as the [HT'ML| elements and internal implementation change from
one framework to another.

Test tools. The requirements for testing tools - created by hosting the application
on two different web servers and by the list list of metrics - are fulfilled by the Lighthouse
CLI and Playwright. They are set up so as to provide results both in human-readable and
machine-readable format enabling easy debugging and automatic creation of aggregate
metrics.

1. Using the Lighthouse CLI, a script for starting the web server and running Light-
house tests on the web application is executed. These tests run 20 times and only
cover the performance measurements of Lighthouse. Reports are created in both
[HTML] and [JSON]| format in order to debug the tests and create the mean average
of every measurement.

PLT | CLT | CUT

Total Byte Weightl X

Time To First Byte| X

Time To Interactivel X X

Total Blocking Time| X X
LoadEventEnd X X
DomContentLoaded X

Last Visual Changel X

Largest Contentful Paint| X

Observed Last Visual Changel X
Observed First Visual Change] X

DOM Mutation Times X X

Table 1: Assignment of metrics to the metric categories: Page Load Time (PUT), Com-
ponent Load Time (CLT) and Component Update Time (CUT)

2. Tests with Playwright focus on the measurement of mutations and the ad-
herence to time budgets. To that end, a script is injected into the browser
context before tests. This recording script initializes a MutationObserver on a spe-
cific[HTMTL]element that is created by the framework. This way, all[DOM]mutations
such as element addition, element removal and attribute change are recorded with
an identifier of the element and the time of the mutation.

The respective metrics covered by Lighthouse and Playwright are seen in table 2]

Lighthouse Playwright

Total Byte Weight (TBW)| domContentLoaded
Time To First Byte (TTFB)| loadEventEnd
Time To Interactive (TTI)| User Input Times
Total Blocking Time (TBT)| Mutation Times

Largest Contentful Paint (LCP)|

First Visual Change (FVC)|

Observed First Visual Change (OFVC)|
Observed Last Visual Change (OLVC)|

Table 2: Assignment of metrics to the test tools

3 Results

Metrics for the page load and for the component load times show no clear generally ap-
plicable evidence for a single framework being faster than the others. Such a distinction
can only be made on a per-metric basis. Figure [2| presents the averages of measurements
from the Lighthouse reports per page and framework.

totalbyteweight

NN Angular on Vercel SN Astro on Vercel N Nextjs on Vercel
NN Nuxt (generate) on Vercel KN Svelte on Vercel SN Vue.js on Verce! [l Angular [l Astro (mixed)

W Astro (duplicate) I Nextjs I Nuxt (build) Il Nuxt (generate) Il React Il Svelte Il Vuejs

React on Vercel NN Nuxt (build) on Vercel

14.000.000
12.000.000 i i
10.000.000 ! = H “ .
g 8000000 H E= E Hs \
£ 6.000.000 !‘ *“ H. H
SR N \
4.000.000 li HEHH HH l H N
Y A § R
2.000.000 !H. =.H. II I Hi l. “.‘
0 I!E !E!E [N | ey | S !E! !!ESII-- Il
Feed About Create Profile
Page
a) [Total Byte Weight (TBW)|
interactive
NN Angular on Vercel BN Astro on Vercel KM Nexts on Vercel S8 React on Vercel M Nuxt (build) on Vercel
SN Nuxt (generate) on Vercel KM Svelte on Vercel BN Vues on Vercel Il Angular Il Astro (mixed)
10 T Ao (duplcae) I Nextjs I Nt (suic) IR Nuxt (generete) B Roact I Svell N Vs
5.000
4.000
£ 3.000
N
2000 o N
i H N N N N
N N N R
1,000 ! N l\i H \ﬂu i \\q\ N .\i
R II R I N III RN
. MW R II REARY W NI
Feed reate Profile
Page
) [Time To Interactive (TTI)|
totalBlockingTime
N Angular on Vercel SN Astro on Vercel S8 Nextjs on Vercel React on Vercel N8 Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel RN Svelte on Vercel [N Vue.js on Verce! Jll Angular [l Astro (mixed)
45 Astro Guplicate) I Noxtjs I Nuxt (ouic) I Nuxt (gonerate) React [l Svelte [Vue.js
300 i
\
50\
\
200 .
g \
150 N
\
100 N
“ | E \ \ ! {
NK
SEE T NN R B
ed About Create Profile

e) [Total Blocking Time (TBT)|

observedLastVisualChange

NN Angular on Vercel SN Astro on Vercel § Nextjs on Vercel React on Vercel W Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel R Svelte on Vercel [N Vue.js on Vercel Ill Angular Il Astro (mixed)

React [l Svelte Il Vue js

M Astro (duplicate) Il Nextjs Il Nuxt (build) Il Nuxt (generate)

7.000

6.000 -
\
\
5.000 \
N
4.000 .

¢ 3.000 Ei i‘i i\‘

N AR

2,000 EH i‘i HEH

N N
oo B8 1% R
o E§§ h!tllll PRI X M 8\ \.“I“ L MW
Feed About Create Profie

Page

) [Observed Last Visual Change (OLVC)|

ms

ms

time ToFirstByte

NN Angular on Vercel BN Astro on Vercel NN Nextjs on Vercel S8 React on Vercel N Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel NN Svelte on Vercel SN Vuejs on Verce! [lll Angular Il Astro (mixed)

I Astro (duplicate) [Nextjs I Nuxt (build) I Nuxt (generate) [l React Il Svelte Il Vuejs

1.200
1.000 i
800 i i E
o
= Sk RN R N
N N&unp & 8wy R4
0 \ N AN FORRY
RN Y R R
20 NN Y RN RN
N .H‘. RN N AW \ ‘.‘i
. AN RV R R
Feed About Create Profile

Page

b) [Time To First Byte (TTFB)|

observedDomContentLoaded

NN Angular on Vercel SN Astro on Vercel NN Nextjs on Vercel S8 React on Vercel N Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel NN Svelte on Vercel SN Vuejs on Verce! [lll Angular Il Astro (mixed)

I Astro (duplicate) [Nextjs I Nuxt (build) Il Nuxt (generate) Il React Il Svelte Il Vuejs
900

800 N
700 E
600 N N \
500 H i = H
Ny \ \
= N : Ly
o0 NN ' NS W
N\ N N W
200 l‘i \ W\ NN
R i i i E
100 NN .N'I I Y NN NN
Oh@.ﬂ.nmmmhﬁmamh!mmmm
Feed About Create Profile

Page

(d) Observed DomContentLoaded

largestContentfulPaint

NN Angular on Vercel BN Astro on Vercel E Nextjs on Vercel React on Vercel 8 Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel KR Svelte on Vercel SN Vue js on Vercel JIll Angular [l Astro (mixed)
I Astro (duplicate) [Nl Nextjs I Nuxt (build) Il Nuxt (generate) React Il Svelte Il Vue js

8.000
Y II
| NN

f) [Largest Contentful Paint (LCP)|

observedFirstVisualChange

7.000

6.000

5.000

4.000

Do e od

3.000
2.000

1.000

7777
T T

Y o 777
s

*"‘II||| ||
W

Create

} Al
| II||| || i

About

1727 7]
| -~ A
|27

0

o
2
8
&

Page

N Angular on Vercel BN Astro on Vercel BN Nextjs on Vercel React on Vercel N Nuxt (build) on Vercel
NN Nuxt (generate) on Vercel RN Svelte on Vercel SN Vue js on Vercel Ill Angular [l Astro (mixed)

I Astro (duplicate) [l Nextjs [l Nuxt (build) Il Nuxt (generate) React Il Svelte Il Vue js

700 i
600 < .
N \
500 . \ \
1 |
400 N
f i \
Two Nad N \ NS .
Y T {1 1
200 N NMN N N N W
Ry Ll B
T L
, SNBSS N SENNtd 8Nl
Feed About Create Profile

Page

) [Observed Last Visual Change (OLVC)|

Figure 2: Lighthouse test results in Google Chrome

Page Load Time. Next.js, Astro and Svelte are the leading frameworks in [TBW]
and Svelte, Next.js, Vue.js and especially Astro have fast results in their [TT]} In addi-
tion, Astro, Angular, Svelte, Nuxt and Vue.js stand out through little fluctuations in [TT]|
across the four pages and the test repetitions. The results of measurements for the [TBT]
also favor Astro and Svelte. In contrast, Astro and Svelte perform poorly in DomCon-

tentLoaded and balanced LoadEventEnd (see figure . These metrics are strengths of
Vue.js, React and Nuxt. The balanced LoadEventEnd is the difference between Load-
EventEnd and the requestStart (see equation . Vue.js and React are also the fastest
frameworks in [OLVC| The [TTFEFB]| does not support a ranking of frameworks. Instead, it
is more dependent on the page content and the host, which influence the results more
than the framework. However, Astro, Next.js and Angular stand out through slow results
in this metric. The balanced LoadEventEnd highlights Vue.js and React positively, but
also demonstrates a high dependency on the browser.

loadEventEnd ygiancea = loadEventEnd 4., — requestStart (1)

Component Load Time. The metrics for the Component Load Time have similar
characteristics as with the Page Load Time. The [OFVC] of the applications are early in
Astro, React and Next.js, which indicates a strength of React-based frameworks. React,
Vue.js and Angular also naturally have a short [Observed Visual Change Duration (OVCD))
(see ﬁgure, which is unsurprising. Theis defined as the time difference between
OFVC|and [OLVC] (see equation . The recordings of early mutations are also very
fast for Astro, Vue.js and React, whereas recordings are missing completely for Angular
(see figure . This is most likely due to a faulty initialization of the MutationObserver
that is responsible for recording mutation times.

observedVisualChange Duration =

observedLastVisualChange — observedFirstVisualChange (2)

IoadEventEnd (balanced) observedVisualChangeDuration

Nuxt N Astro NN Vue s React NI Anguior NN Sveltc N Nextis NN Angular on Vercel SN Astro on Vercel Nexts on Vercel React on Vercel 8 Nuxt (build) on Vercel
1400 ms SN Nuxt (generate) on Vercel N Svelte on Vercel SN Vue.js on Verce! [ll Angular [l Astro (mixed)
I Astro (duplicate) Nextjs [l Nuxt (build) Il Nuxt (generate) React Il Svelte I Vue s
1200 ms 6.000
5 1000ms 5.000 E
; 800ms 4,000 i
S s00ms \
g . . . < e N &
g a0ms ° ﬁ ‘i EE‘:
200ms o . . 3 ' 2000 “ H. .“.
i 6 8 o b o " e ojoote I N ms
oms - “'\ - W\ N .H i“.
v O CoMNGl. . aSommr BN
W 0e° W et oo Feed About Create Profile
Browser Path
(a) Balanced loadEventEnd timings (b) [Observed Visual Change Duration (OVCD))
Framework Reaction Times
I Chromium [Mobile Chrome Google Chrome Microsoft Edge [Nl Firefox [N Mobile Safari
Component load mutation times I Deskiop Safari
Nuxt [N Astro [N Vue js React I Anguiar [Sveite NN Nextjs gooms o
2000 ms
1800 ms . 500 ms .
_ 1600 ms. ‘% 100 ms '
S 1400ms . E []
2 1200ms ° Z 200ms
2 1000ms l % . ' . .
% 800 ms ' 5 200ms . L. L B
2 sooms (] $ L] € . . " . .
B s . . $ ' . oms et e th e T T e o i
e L] L} ; .;) 1] : - agee®? 2, 28 " |11 o8l
oms Nuxt Astro Vue js React Angular Svelte Nextjs
N@gadﬂ Oea“‘“"aw o o e oo o o Framework
Browser
(d) Recorded mutation timings after user
(¢) Component load mutation times actions
Figure 3

Component Update Time. In contrast, the measurements made for the Compo-
nent Update Time suggest clear rankings of the frameworks and of the used browsers
(see figure and table . The times of the mutations are quite similar to each
other except in Mobile Safari and Desktop Safari. In these browsers, Next.js is the slow-
est and Nuxt is the fastest framework. Across all pages and frameworks, the ranking of
browsers from fastest to slowest is Google Chrome, Microsoft Edge, Chromium, Mobile
Chrome, Firefox, Mobile Safari and Desktop Safari. This means that time budgets are
most easily kept to in Google Chrome and hardest in Desktop Safari. The ranking of
frameworks is - from fastest to slowest - Nuxt, Angular, Vue.js, React, Astro/Svelte and
Next.js. In addition, Nuxt, Vue.js and Svelte are economical with mutations after
user interaction, whereas the other frameworks update the after user interaction
in more different ways. This ranking can influence the choice of framework for user input
heavy applications. For this kind of application, Nuxt, Angular, Vue.js and React present
themselves as the best choices relating to Component Update Time.

4 Summary

The results of the study are inconclusive in relation to load times for both pages and
components. The measurements only show general advantages of single frameworks for
the component update time.

Nuxt is the fastest framework in regards to component update time, whereas Next.js is
the slowest. Likewise, Google Chrome turns out to be the fastest browser for component
updates These updates are slowest in Desktop Safari.

However, test results fluctuate between repetitions. For this reason, future work
should focus on making these results more reliable and statistically interpretable. Reli-
ability might be achieved through repetition of the study with more test runs and the
inclusion of other hosting environments. Additional pages might outline dependencies of
the performance on the type of web page. Continuations of this study could also expand
the user actions to other interactions than filling a form, for instance navigation between
pages.

This study also revealed that the used algorithms for start and end of the recording
are suboptimal for the goals. The start is delayed with periodical initialization attempts
and the ending of the time frame for recording is manually set. For these reasons, early
mutations (fast loading components), slow mutations (slow loading components) and
periodically mutating components, e.g. a digital clock, cannot be recorded properly.

Angular | Astro | Next.js | Nuxt | React | Svelte | Vue.js
44 51 47 39 44 38 51
Chromium 69 71 75 66 58 74 77
95 89 108 94 85 95 104
54 63 59 59 54 60 52
Firefox 89 99 142 83 84 94 82
123 142 235 108 181 129 103
77 87 79 51 84 70 47
Desktop Safari 123 170 304 86 169 164 136
172 270 493 124 280 283 200
44 49 47 42 44 45 46
Mobile Chrome 67 69 94 61 67 81 69
90 85 143 82 82 116 89
52 78 73 47 67 56 52
Mobile Safari 106 154 196 110 126 126 133
152 254 372 167 183 208 206
43 44 46 37 41 40 40
Microsoft Edge 70 64 73 61 62 74 61
90 80 134 85 75 102 79
41 43 41 34 40 39 37
Google Chrome 62 57 69 60 59 64 61
84 72 99 7 7 89 7
51 59 56 44 53 50 46
Browser Average 84 98 136 75 89 97 88
115 142 226 105 138 146 123
45 48 45 35 45 42 36
Weighted Browser Average 69 74 107 60 75 78 70
94 104 167 80 110 118 93
Framework
minimum with framework in browser
Browser average with framework in browser

maximum with framework in browser

average of minima across browsers
Browser Average total average across browsers
average of maxima across browsers

Table 3: Minimum, average and maximum of recorded mutation times after user input
in milliseconds (fastest times are highlighted green, slowest red). Weights are based on
browser usage quota (StatCounter, [2024]).

A Acronyms

CI/CD Continuous Integration and Continuous Delivery.
DOM Document Object Model.

FVC First Visual Change.

HTML Hypertext Markup Language.

JS JavaScript.

JSON JavaScript Object Notion.

LCP Largest Contentful Paint.

LVC Last Visual Change.

OFVC Observed First Visual Change.
OLVC Observed Last Visual Change.
OVCD Observed Visual Change Duration.
SSR Server-side Rendering.

TBT Total Blocking Time.

TBW Total Byte Weight.

TTFB Time To First Byte.

TTI Time To Interactive.

B References

Bierman, G., Abadi, M., and Torgersen, M. (2014). Understanding typescript. In
Jones, R., editor, ECOOP 201/ — Object-Oriented Programming, pages 257—-281, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Devographics (2024). State of javascript 2023. https://2023.stateof js.com/en-US/
libraries/front-end-frameworks/. accessed 07/29/2024.

Grigorik, I. (2013). High Performance Browser Networking. O'Reilly Media, Inc., 1005
Gravensetin Highwy North, Sebastopol, CA 95472.

Instagram from Meta (2024). Instagram. https://www.instagram.com/. accessed
08/02,/2024.

Li, Z., Zhang, M., Zhu, Z., Chen, Y., Greenberg, A., and Wang, Y.-M. (2010).
Webprophet: automating performance prediction for web services. In Proceedings of the
7th USENIX Conference on Networked Systems Design and Implementation, NSDI'10,
page 10, USA. USENIX Association.

StatCounter (2024). Quick start. https://gs.statcounter.com/. accessed
07/18,/2024.

Zhou, M., Giyane, M., and Nyasha, M. (2013). Effects of web page contents on load
time over the internet. International Journal of Science and Research (IJSR), pages
2319-7064.

Github repository: All code and additional material can be found under https:
//github.com/andreasnicklaus/master.

10

https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2023.stateofjs.com/en-US/libraries/front-end-frameworks/
https://www.instagram.com/
https://gs.statcounter.com/
https://github.com/andreasnicklaus/master
https://github.com/andreasnicklaus/master

	Introduction
	Application and testing environment
	Results
	Summary
	Acronyms
	References

